New a posteriori error estimates for singular boundary value problems

被引:0
作者
Winfried Auzinger
Othmar Koch
Dirk Praetorius
Ewa Weinmüller
机构
[1] Vienna University of Technology,
来源
Numerical Algorithms | 2005年 / 40卷
关键词
collocation; essential singularity; boundary value problems; ordinary differential equations; a posteriori error estimation; defect correction;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the asymptotic properties and efficiency of several a posteriori estimates for the global error of collocation methods. Proofs of the asymptotic correctness are given for regular problems and for problems with a singularity of the first kind. We were also strongly interested in finding out which of our error estimates can be applied for the efficient solution of boundary value problems in ordinary differential equations with an essential singularity. Particularly, we compare estimates based on the defect correction principle with a strategy based on mesh halving.
引用
收藏
页码:79 / 100
页数:21
相关论文
共 50 条
[31]   Positive solutions to superlinear singular boundary value problems [J].
Agarwal, RP ;
O'Regan, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (01) :129-147
[32]   On the singular PDE's geometry and boundary value problems [J].
Agarwal, Ravi P. ;
Prastaro, Agostino .
APPLICABLE ANALYSIS, 2009, 88 (08) :1115-1131
[33]   DISCONTINUOUS FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: ROBUST A PRIORI AND A POSTERIORI ERROR ESTIMATES [J].
Cai, Zhiqiang ;
He, Cuiyu ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) :400-418
[34]   Nonlinear convection-diffusion problems: fully discrete approximations and a posteriori error estimates [J].
De Frutos, Javier ;
Garcia-Archilla, Bosco ;
Novo, Julia .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) :1402-1430
[35]   SINGULAR STURM LIOUVILLE PROBLEMS AND EXISTENCE OF SOLUTIONS TO SINGULAR NONLINEAR BOUNDARY-VALUE-PROBLEMS [J].
OREGAN, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (07) :767-779
[36]   Robust error estimates of PINN in one-dimensional boundary value problems for linear elliptic equations [J].
Yoo, Jihahm ;
Lee, Haesung .
AIMS MATHEMATICS, 2024, 9 (10) :27000-27027
[37]   A Posteriori Error Estimation for Incompressible Viscous Fluid With a New Boundary Condition [J].
El Akkad, Abdeslam ;
Elkhalfi, Ahmed .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (03) :53-74
[38]   ERROR-ESTIMATES FOR PARALLEL SHOOTING USING INITIAL OR BOUNDARY-VALUE METHODS [J].
GHELARDONI, P ;
GHERI, G ;
MARZULLI, P .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :127-139
[39]   Positive solutions for a class of singular fractional boundary value problems [J].
Caballero, J. ;
Harjani, J. ;
Sadarangani, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1325-1332
[40]   Piecewise quasilinearization techniques for singular boundary-value problems [J].
Ramos, JI .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 158 (01) :12-25