Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap

被引:0
|
作者
C. P. Wang
X. J. Liu
R. Kainuma
Y. Takaku
I. Ohnuma
K. Ishida
机构
[1] Tohoku University,the Department of Materials Science, Graduate School of Engineering
来源
Metallurgical and Materials Transactions A | 2004年 / 35卷
关键词
Material Transaction; Interfacial Energy; Molten Alloy; Macroscopic Morphology; Front Atom;
D O I
暂无
中图分类号
学科分类号
摘要
The effects of alloying elements on the macroscopic morphologies in Cu-Fe base alloys were experimentally investigated. It was found that macroscopic homogeneity can be achieved by the addition of Mn, Ni, Al, or Co in the Cu-Fe base alloys, while the core-type macroscopic morphologies with Cu-rich or Fe-rich cores, which are radially separated as two layers in the inner and outer parts of the ingot solidified in the cast-iron mold, were formed by the addition of C, Cr, Mo, Nb, Si, or V. It is shown that the formation of the core-type macroscopic morphology is strongly connected with the existence of a stable miscibility gap of the liquid phase in the Cu-Fe base alloy due to the addition of alloying elements. The liquid phase with less volume fraction always forms the center part. This result can be explained by a mechanism that the minor droplets as the second phase are forced to move into the thermal center due to Marangoni motion, which is caused by the temperature dependence of interfacial energy between two liquid phases.
引用
收藏
页码:1243 / 1253
页数:10
相关论文
empty
未找到相关数据