A note on the zeros of zeta and L-functions

被引:0
|
作者
Emanuel Carneiro
Vorrapan Chandee
Micah B. Milinovich
机构
[1] IMPA - Instituto Nacional de Matemática Pura e Aplicada,Department of Mathematics
[2] Burapha University,Department of Mathematics
[3] University of Mississippi,undefined
来源
Mathematische Zeitschrift | 2015年 / 281卷
关键词
Riemann zeta-function; Automorphic ; -functions; Beurling–Selberg extremal problem; Extremal functions; Exponential type; 11M06; 11M26; 11M36; 11M41; 41A30;
D O I
暂无
中图分类号
学科分类号
摘要
Let πS(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi S(t)$$\end{document} denote the argument of the Riemann zeta-function at the point s=12+it\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=\tfrac{1}{2}\,+\,it$$\end{document}. Assuming the Riemann hypothesis, we give a new and simple proof of the sharpest known bound for S(t). We discuss a generalization of this bound for a large class of L-functions including those which arise from cuspidal automorphic representations of GL(m) over a number field. We also prove a number of related results including bounding the order of vanishing of an L-function at the central point and bounding the height of the lowest zero of an L-function.
引用
收藏
页码:315 / 332
页数:17
相关论文
共 50 条
  • [41] Lower bounds for the moments of the derivatives of the riemann zeta-function and dirichlet L-functions
    Sono, Keiju
    LITHUANIAN MATHEMATICAL JOURNAL, 2012, 52 (04) : 420 - 434
  • [42] Unified representation of the family of L-functions
    Hacer Ozden
    Yilmaz Simsek
    Journal of Inequalities and Applications, 2013
  • [43] Weighted one-level density of low-lying zeros of Dirichlet L-functions
    Shingo Sugiyama
    Ade Irma Suriajaya
    Research in Number Theory, 2022, 8
  • [44] Selberg’s method in the problem about the zeros of linear combinations of L-functions on the critical line
    I. S. Rezvyakova
    Doklady Mathematics, 2015, 92 : 448 - 451
  • [45] The derivative formula of p-adic L-functions for imaginary quadratic fields at trivial zeros
    Masataka Chida
    Ming-Lun Hsieh
    Annales mathématiques du Québec, 2023, 47 : 1 - 30
  • [46] Mixed moments of L-functions
    Meera Thillainatesan
    The Ramanujan Journal, 2006, 11 : 111 - 133
  • [47] On the Non-Trivial Zeros off the Critical Line for L-functions from the Extended Selberg Class
    Jerzy Kaczorowski
    Mieczysław Kulas
    Monatshefte für Mathematik, 2007, 150 : 217 - 232
  • [48] The L-functions of Witt coverings
    Chunlei Liu
    Dasheng Wei
    Mathematische Zeitschrift, 2007, 255 : 95 - 115
  • [49] Ratios of Artin L-functions
    Hochfilzer, Leonhard
    Oliver, Thomas
    JOURNAL OF NUMBER THEORY, 2022, 236 : 1 - 40
  • [50] On the singularities of multiple L-functions
    Zaharescu, Alexandru
    Zaki, Mohammad
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02): : 289 - 298