A note on the zeros of zeta and L-functions

被引:0
|
作者
Emanuel Carneiro
Vorrapan Chandee
Micah B. Milinovich
机构
[1] IMPA - Instituto Nacional de Matemática Pura e Aplicada,Department of Mathematics
[2] Burapha University,Department of Mathematics
[3] University of Mississippi,undefined
来源
Mathematische Zeitschrift | 2015年 / 281卷
关键词
Riemann zeta-function; Automorphic ; -functions; Beurling–Selberg extremal problem; Extremal functions; Exponential type; 11M06; 11M26; 11M36; 11M41; 41A30;
D O I
暂无
中图分类号
学科分类号
摘要
Let πS(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi S(t)$$\end{document} denote the argument of the Riemann zeta-function at the point s=12+it\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=\tfrac{1}{2}\,+\,it$$\end{document}. Assuming the Riemann hypothesis, we give a new and simple proof of the sharpest known bound for S(t). We discuss a generalization of this bound for a large class of L-functions including those which arise from cuspidal automorphic representations of GL(m) over a number field. We also prove a number of related results including bounding the order of vanishing of an L-function at the central point and bounding the height of the lowest zero of an L-function.
引用
收藏
页码:315 / 332
页数:17
相关论文
共 50 条
  • [1] A note on the zeros of zeta and L-functions
    Carneiro, Emanuel
    Chandee, Vorrapan
    Milinovich, Micah B.
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 315 - 332
  • [2] On derivatives of zeta and L-functions
    Dong, Zikang
    Song, Yutong
    Wang, Weijia
    Zhang, Hao
    RAMANUJAN JOURNAL, 2025, 66 (01) : 35 - 35
  • [3] A Note on Entire L-Functions
    Andrés Chirre
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 67 - 93
  • [4] A Note on Entire L-Functions
    Chirre, Andres
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (01): : 67 - 93
  • [5] Large values of Dirichlet L-functions at zeros of a class of L-functions
    Li, Junxian
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (06): : 1459 - 1505
  • [6] Simple zeros of modular L-functions
    Milinovich, Micah B.
    Ng, Nathan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 1465 - 1506
  • [7] On the argument of L-functions
    Emanuel Carneiro
    Renan Finder
    Bulletin of the Brazilian Mathematical Society, New Series, 2015, 46 : 601 - 620
  • [8] DISTINCT ZEROS AND SIMPLE ZEROS FOR THE FAMILY OF DIRICHLET L-FUNCTIONS
    Wu, Xiaosheng
    QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (04) : 757 - 779
  • [9] Zeros of the first derivative of Dirichlet L-functions
    Akatsuka, Hirotaka
    Suriajaya, Ade Irma
    JOURNAL OF NUMBER THEORY, 2018, 184 : 300 - 329
  • [10] Zeros of Dirichlet L-functions on the critical line
    Sono, Keiju
    JOURNAL OF NUMBER THEORY, 2025, 271 : 348 - 388