Manifolds of quasiconformal mappings and the nonlinear Beltrami equation

被引:0
作者
Kari Astala
Albert Clop
Daniel Faraco
Jarmo Jääskeläinen
机构
[1] Aalto University,Department of Mathematics and Systems Analysis
[2] LE STUDIUM Loire Valley Institute for Advanced Studies,Laboratoire de Mathématiques, Analyse, Probabilités, Modélisation
[3] Université d’Orléans,Department of Mathematics and Statistics
[4] University of Helsinki,Departament de Matemàtiques i Informàtica
[5] Universitat de Barcelona,Department of Mathematics
[6] Universidad Autónoma de Madrid,Department of Mathematics and Statistics
[7] ICMAT CSIC-UAM-UCM-UC3M,undefined
[8] University of Jyväskylä,undefined
来源
Journal d'Analyse Mathématique | 2019年 / 139卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show that the homeomorphic solutions to each nonlinear Beltrami equation ∂z¯f=H(z,∂zf)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial_{\bar{z}}f=\mathcal{H}(z,\partial_{z}f)$$\end{document} generate a two-dimensional manifold of quasiconformal mappings FH⊂Wloc1,2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}_\mathcal{H} \subset {W_{\rm{loc}}^{1,2}(\mathbb{C})}$$\end{document}. Moreover, we show that under regularity assumptions on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}, the manifold FH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}_\mathcal{H}$$\end{document} defines the structure function H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} uniquely.
引用
收藏
页码:207 / 238
页数:31
相关论文
共 19 条
[1]  
Alessandrini G(2009)Beltrami operators, non-symmetric elliptic equations and quantitative Jacobian bounds Ann. Acad. Sci. Fenn. Math. 34 47-67
[2]  
Nesi V(2017)Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian Ann. Inst. H. Poincaré Anal. Non Linéaire 34 1543-1559
[3]  
Astala K(2001)Beltrami operators in the plane Duke Math. J. 107 27-56
[4]  
Clop A(2009)Homeomorphic solutions to reduced Beltrami equations Ann. Acad. Sci. Fenn. Math. 34 607-613
[5]  
Faraco D(2005)G-closed classes of elliptic operators in the complex plane Ricerche Mat. 54 403-432
[6]  
Jääskeläinen J(1974)Quasiconformal mappings and non-linear elliptic equations in two variables. Vols. I, II Bull. Acad. Polon. Sci. Sér. Sci.Math. Astronom. Phys. 22 473-478
[7]  
Koski A(2013)On reduced Beltrami equations and linear families of quasiregular mappings J. Reine Angew. Math. 682 49-64
[8]  
Astala K(undefined)undefined undefined undefined undefined-undefined
[9]  
Iwaniec T(undefined)undefined undefined undefined undefined-undefined
[10]  
Saksman E(undefined)undefined undefined undefined undefined-undefined