Level sets for the stationary solutions of the Ginzburg-Landau equation

被引:0
作者
Igor Kukavica
机构
[1] Department of Mathematics,
[2] The University of Chicago,undefined
[3] Chicago,undefined
[4] IL 60637,undefined
[5] USA (e-mail: kukavica@cs.uchicago.edu) ,undefined
来源
Calculus of Variations and Partial Differential Equations | 1997年 / 5卷
关键词
Boundary Condition; Stationary Solution; Periodic Boundary; Periodic Boundary Condition;
D O I
暂无
中图分类号
学科分类号
摘要
We establish an upper bound of the measure of any level set of a stationary solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $u$\end{document} of theGinzburg-Landau equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ - \Delta u + \vert u \vert^2 u - au = 0 \] \end{document} subject to periodic boundary conditions. The obtained bound depends polynomially on the parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $a$\end{document}.
引用
收藏
页码:511 / 521
页数:10
相关论文
empty
未找到相关数据