Heuristically accelerated reinforcement learning modularization for multi-agent multi-objective problems

被引:0
|
作者
Leonardo Anjoletto Ferreira
Carlos Henrique Costa Ribeiro
Reinaldo Augusto da Costa Bianchi
机构
[1] Universidade Metodista de São Paulo,
[2] Instituto Tecnológico de Aeronáutica,undefined
[3] Centro Universitário da FEI,undefined
来源
Applied Intelligence | 2014年 / 41卷
关键词
Reinforcement learning; Heuristically accelerated reinforcement learning; Multi-agent systems; Multi-objective problems;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents two new algorithms for finding the optimal solution of a Multi-agent Multi-objective Reinforcement Learning problem. Both algorithms make use of the concepts of modularization and acceleration by a heuristic function applied in standard Reinforcement Learning algorithms to simplify and speed up the learning process of an agent that learns in a multi-agent multi-objective environment. In order to verify performance of the proposed algorithms, we considered a predator-prey environment in which the learning agent plays the role of prey that must escape the pursuing predator while reaching for food in a fixed location. The results show that combining modularization and acceleration using a heuristics function indeed produced simplification and speeding up of the learning process in a complex problem when comparing with algorithms that do not make use of acceleration or modularization techniques, such as Q-Learning and Minimax-Q.
引用
收藏
页码:551 / 562
页数:11
相关论文
共 50 条
  • [21] An Algorithm for Multi-Objective Multi-Agent Optimization
    Blondin, Maude J.
    Hale, Matthew
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 1489 - 1494
  • [22] Multi-objective safe reinforcement learning: the relationship between multi-objective reinforcement learning and safe reinforcement learning
    Horie, Naoto
    Matsui, Tohgoroh
    Moriyama, Koichi
    Mutoh, Atsuko
    Inuzuka, Nobuhiro
    ARTIFICIAL LIFE AND ROBOTICS, 2019, 24 (03) : 352 - 359
  • [23] Multi-objective safe reinforcement learning: the relationship between multi-objective reinforcement learning and safe reinforcement learning
    Naoto Horie
    Tohgoroh Matsui
    Koichi Moriyama
    Atsuko Mutoh
    Nobuhiro Inuzuka
    Artificial Life and Robotics, 2019, 24 : 352 - 359
  • [24] Argumentation Accelerated Reinforcement Learning for Cooperative Multi-Agent Systems
    Gao, Yang
    Toni, Francesca
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 333 - 338
  • [25] Analysing Congestion Problems in Multi-agent Reinforcement Learning
    Radulescu, Roxana
    Vrancx, Peter
    Nowe, Ann
    AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2017, : 1705 - 1707
  • [26] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43
  • [27] Multi-agent reinforcement learning based on policies of global objective
    张化祥
    黄上腾
    Journal of Systems Engineering and Electronics, 2005, (03) : 676 - 681
  • [28] Multi-Objective Optimization in Air-to-Air Communication System Based on Multi-Agent Deep Reinforcement Learning
    Lin, Shaofu
    Chen, Yingying
    Li, Shuopeng
    SENSORS, 2023, 23 (23)
  • [29] Multi-objective multi-agent deep reinforcement learning to reduce bus bunching for multiline services with a shared corridor
    Wang, Jiawei
    Sun, Lijun
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 155
  • [30] A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning
    Abid, Md. Shadman
    Apon, Hasan Jamil
    Hossain, Salman
    Ahmed, Ashik
    Ahshan, Razzaqul
    Lipu, M. S. Hossain
    APPLIED ENERGY, 2024, 353