Homoclinic points and isomorphism rigidity of algebraic ℤd-actions on zero-dimensional compact abelian groups

被引:0
作者
Siddhartha Bhattacharya
Klaus Schmidt
机构
[1] Tata Institute of Fundamental Research,Department of Mathematics
[2] University of Vienna,Mathematics Institute
[3] Erwin Schrödinger Institute for Mathematical Physics,undefined
来源
Israel Journal of Mathematics | 2003年 / 137卷
关键词
Prime Ideal; Dual Module; Compact Abelian Group; Laurent Polynomial; Weyl Chamber;
D O I
暂无
中图分类号
学科分类号
摘要
Letd>1, and letα andβ be mixing ℤd-actions by automorphisms of zero-dimensional compact abelian groupsX andY, respectively. By analyzing the homoclinic groups of certain sub-actions ofα andβ we prove that, if the restriction ofα to some subgroup Γ ⊂ ℤd of infinite index is expansive and has completely positive entropy, then every measurable factor mapφ: (X, α)→(Y, β) is almost everywhere equal to an affine map. The hypotheses of this result are automatically satisfied if the actionα contains an expansive automorphismαn,n ∈ ℤd, or ifα arises from a nonzero prime ideal in the ring of Laurent polynomials ind variables with coefficients in a finite prime field. Both these corollaries generalize the main theorem in [9]. In several examples we show that this kind of isomorphism rigidity breaks down if our hypotheses are weakened.
引用
收藏
页码:189 / 209
页数:20
相关论文
共 15 条
[1]  
Aoki N.(1981)A simple proof of the Bernoullicity of ergodic automorphisms of compact abelian groups Israel Journal of Mathematics 38 189-198
[2]  
Bhattacharya S.(2003)- Duke Mathematical Journal 116 471-476
[3]  
Boyle M.(1997)Expansive subdynamics Transactions of the American Mathematical Society 349 55-102
[4]  
Lind D.(2001)- Ergodic Theory and Dynamical Systems 21 1695-1729
[5]  
Einsiedler M.(1981) ℤ Bulletin de l’Académie Polonaise des Sciences Sér. Sci. Tech. 29 349-362
[6]  
Lind D.(2000)- Inventiones Mathematicae 142 559-577
[7]  
Miles R.(1999)- Journal of the American Mathematical Society 12 953-980
[8]  
Ward T. B.(1995) ℤ Inventiones Mathematicae 120 455-488
[9]  
Kamiński B.(undefined)- undefined undefined undefined-undefined
[10]  
Kitchens B.(undefined)- undefined undefined undefined-undefined