An extension of the proximal point algorithm beyond convexity

被引:0
作者
Sorin-Mihai Grad
Felipe Lara
机构
[1] University of Vienna,Faculty of Mathematics
[2] Universidad de Tarapacá,Departamento de Matemática, Facultad de Ciencias
来源
Journal of Global Optimization | 2022年 / 82卷
关键词
Nonsmooth optimization; Nonconvex optimization; Proximity operator; Proximal point algorithm; Generalized convex function;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and investigate a new generalized convexity notion for functions called prox-convexity. The proximity operator of such a function is single-valued and firmly nonexpansive. We provide examples of (strongly) quasiconvex, weakly convex, and DC (difference of convex) functions that are prox-convex, however none of these classes fully contains the one of prox-convex functions or is included into it. We show that the classical proximal point algorithm remains convergent when the convexity of the proper lower semicontinuous function to be minimized is relaxed to prox-convexity.
引用
收藏
页码:313 / 329
页数:16
相关论文
共 57 条
[1]  
Adly S(2019)On a decomposition formula for the proximal operator of the sum of two convex functions J. Convex Anal. 26 699-718
[2]  
Bourdin L(2018)Accelerating the DC algorithm for smooth functions Math. Programm. 169 95-118
[3]  
Caubet F(2018)Transformation of quasiconvex functions to eliminate local minima J. Optim. Theory Appl. 177 93-105
[4]  
Aragón-Artacho FJ(2019)A general double-proximal gradient algorithm for d.c. programming Math. Programm. 178 301-326
[5]  
Fleming RMT(2017)Proximal-gradient algorithms for fractional programming Optimization 66 1383-1396
[6]  
Vuong PT(2003)Coercivity concepts and recession function in constrained problems Int. J. Math. Sci. 2 83-96
[7]  
Al-Homidan S(2006)Algorithms for the quasiconvex feasibility problem J. Comput. Appl. Math. 185 34-50
[8]  
Hadjisavvas N(2004)Proximal methods for cohypomonotone operators SIAM J. Control Optim. 43 731-742
[9]  
Shaalan L(1997)-convex sets and strong quasiconvexity Math. Oper. Res. 22 998-1022
[10]  
Banert S(2010)A proximal point algorithm with a Optimization 59 777-792