Iso-Huygens Deformations of Homogeneous Differential Operators Related to a Special Cone of Rank \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{3}}$$ \end{document}

被引:0
作者
S. P. Khékalo
机构
[1] Kolomna State Pedagogical Institute,
关键词
Gindikin operator; Huygens principle; deformation; gauge equivalence; intertwining operators; Stellmacher--Lagnese potential; Calogero--Moser potential;
D O I
10.1023/A:1012972120302
中图分类号
学科分类号
摘要
We consider iso-Huygens deformations of homogeneous hyperbolic Gindikin operators related to a special cone of rank \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{3}}$$ \end{document}. The deformations are carried out with the use of Stellmacher--Lagnese and Calogero--Moser potentials. Using the notion of gauge equivalence of operators and the algebraic method of intertwining operators, we write out the fundamental solutions of the deformed operators in closed form and give sufficient conditions for the Huygens principle to hold for these operators in the strengthened or ordinary form.
引用
收藏
页码:847 / 859
页数:12
相关论文
共 14 条
[1]  
indikin S. G. G.(1964)Analysis in homogeneous domains Uspekhi Mat. Nauk 19 3-92
[2]  
Vainberg B. R.(1967)A strengthened Huygens principle for a certain class of differential operators with constant coefficients Trudy Moskov. Mat. Obshch. 16 151-180
[3]  
Gindikin S. G.(1947)The solution of Cauchy's problem for two totally hyperbolic differential equations by means of Riesz integrals Ann. Math. 48 785-826
[4]  
Gærding L.(1994)The Huygens principle and integrability Uspekhi Mat. Nauk 49 8-78
[5]  
Berest Y. Y.(1995)Fundamental solution for partial differential equations with reflection group invariance J. Math. Phys. 36 4324-4339
[6]  
Veselov A. P.(1967)The Cauchy problem for strongly homogeneous differential operators Trudy Moskov. Mat. Obshch. 16 181-208
[7]  
Berest Y.(1997)Huygens' principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries equation Comm. Math. Phys. 190 113-132
[8]  
Molchanov Y.(1929)A set of differential equations, which can be solved by polynomials Proc. London Math. Soc. 30 401-414
[9]  
Gindikin S. G.(2000)The fundamental solution of an iterated operator of Cayley-G°arding type Uspekhi Mat. Nauk 55 191-192
[10]  
Loutsenko Y. Y.(undefined)undefined undefined undefined undefined-undefined