Periodicity and continuous dependence in iterative differential equations

被引:0
|
作者
Bouzid Mansouri
Abdelouaheb Ardjouni
Ahcene Djoudi
机构
[1] University of Annaba,Department of Mathematics, Faculty of Sciences
[2] University of Souk Ahras,Department of Mathematics and Informatics, Faculty of Sciences and Technology
[3] University of Annaba,Applied Mathematics Lab, Department of Mathematics, Faculty of Sciences
关键词
Fixed point; Periodic solutions; Stability; Iterative differential equations; Primary 34K13; 34A34; Secondary 34K30; 34L30;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the existence, uniqueness and continuous dependence of periodic solutions of the iterative differential equation x′(t)=∑m=1N∑l=1∞Cl,m(t)x[m](t)l+ddtgt,x[1](t),x[2](t),…,x[N](t)+h(t).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x^{\prime }(t)=\sum \limits _{m=1}^{N}\sum \limits _{l=1}^{\infty }C_{l,m}(t)\left( x^{[m]}(t)\right) ^{l}+\frac{d}{dt}g\left( t,x^{[1]}(t),x^{[2]} (t),\ldots ,x^{[N]}(t)\right) +h(t). \end{aligned}$$\end{document}Using Schauder’s fixed point theorem, we obtain the existence of periodic solution and by the contraction mapping principle we obtain the uniqueness. An example is given to illustrate this work. The results obtained here extend the work of Zhao and Feckan [14].
引用
收藏
页码:561 / 576
页数:15
相关论文
共 50 条