Vacuum ultraviolet coherent undulator radiation from attosecond electron bunches

被引:0
作者
Enrico Brunetti
Bas van der Geer
Marieke de Loos
Kay A. Dewhurst
Andrzej Kornaszewski
Antoine Maitrallain
Bruno D. Muratori
Hywel L. Owen
S. Mark Wiggins
Dino A. Jaroszynski
机构
[1] University of Strathclyde,SUPA, Department of Physics
[2] Cockcroft Institute,undefined
[3] Pulsar Physics,undefined
[4] The University of Manchester,undefined
[5] STFC Daresbury Laboratory,undefined
来源
Scientific Reports | / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Attosecond duration relativistic electron bunches travelling through an undulator can generate brilliant coherent radiation in the visible to vacuum ultraviolet spectral range. We present comprehensive numerical simulations to study the properties of coherent emission for a wide range of electron energies and bunch durations, including space-charge effects. These demonstrate that electron bunches with r.m.s. duration of 50 as, nominal charge of 0.1 pC and energy range of 100–250 MeV produce 109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^9$$\end{document} coherent photons per pulse in the 100–600 nm wavelength range. We show that this can be enhanced substantially by self-compressing negatively chirped 100 pC bunches in the undulator to produce 1014\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{14}$$\end{document} coherent photons with pulse duration of 0.5–3 fs.
引用
收藏
相关论文
共 337 条
[31]  
Smith TI(2018)Universal representation of undulator phase errors Phys. Rev. Accel. Beams 21 110704-undefined
[32]  
Jaroszynski DA(2017)Coherent mode decomposition using mixed Wigner functions of Hermite–Gaussian beams Opt. Lett. 42 1576-undefined
[33]  
Bakker RJ(2014)Numerical methods for characterization of synchrotron radiation based on the Wigner function method Phys. Rev. ST Accel. Beams 17 060702-undefined
[34]  
van der Meer AFG(2001)SPECTRA: A synchrotron radiation calculation code J. Synchrotron. Rad. 8 1221-undefined
[35]  
Oepts D(2020)Self-consistent numerical approach to track particles in free electron laser interaction with electromagnetic field modes Phys. Rev. Accel. Beams 23 110702-undefined
[36]  
van Amersfoort PW(1994)Performance of the undulator for the FOM-FEM project Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 341 466-undefined
[37]  
Wiggins SM(2007)Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime Phys. Rev. Spec. Top. Accel. Beams 605 409-undefined
[38]  
Jaroszynski DA(2009)Theory of edge radiation. Part I: Foundations and basic applications Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 3 27-undefined
[39]  
McNeil BWJ(2019)Permanent magnet-based quadrupoles for plasma acceleration sources Instruments 203 66-undefined
[40]  
Robb GRM(2016)A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm Comput. Phys. Commun. 87 021107-undefined