Molecular genetic mapping of Gby, a new greenbug resistance gene in bread wheat

被引:0
作者
E. Boyko
S. Starkey
M. Smith
机构
[1] Kansas State University,Department of Entomology
来源
Theoretical and Applied Genetics | 2004年 / 109卷
关键词
Chinese Spring; Physical Density; Restriction Fragment Length Polymorphism Marker; Selection Accuracy; Wheat Group;
D O I
暂无
中图分类号
学科分类号
摘要
The greenbug, Schizaphis graminum (Rhodani), is one of the major insect pests of wheat worldwide and it is important to develop a basic understanding of the chromosomal locations of known and new greenbug resistance genes. Gby is a new greenbug resistance gene in the wheat line ‘Sando’s selection 4040’. A mapping population used in this study was derived from a cross of Sando’s 4040 and PI220127, a greenbug susceptible wheat land race from Afghanistan. A progeny test indicated that Gby is inherited as a single semi-dominant gene. A genetic linkage map consisting of Gby, Xgwm322 (a wheat microsatellite marker), XksuD2 (an STS marker) and 18 restriction fragment length polymorphism (RFLP) loci was constructed. We used DNA from Chinese Spring 7A deletion lines to show that the gwm332 and ksuD2 amplified fragments mapped in this study are located on a long arm of chromosome 7A. This suggests that Gby is located on wheat chromosome 7A. Gby was mapped to the area in the middle of the ‘island’ of putative defense response genes that are represented by RFLP markers (Xpsr119, XZnfp, Xbcd98 and Pr1b) previously mapped to the distal part of the short arm of wheat chromosome group 7. This region of chromosome 7A is characterized by a high recombination rate and a high physical density of markers which makes Gby a very good candidate for map-based cloning. The selection accuracy when the RFLP markers Xbcd98, Xpsr119 or XZnfp and Pr1b flanking Gby are used together to tag Gby is 99.78%, suggesting that they can be successfully used in marker assisted selection.
引用
收藏
页码:1230 / 1236
页数:6
相关论文
empty
未找到相关数据