Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity

被引:0
作者
Béatrice Rivière
Simon Shaw
Mary F. Wheeler
J.R. Whiteman
机构
[1] TICAM,Center for Subsurface Modeling
[2] University of Texas,BICOM
[3] Brunel University,undefined
来源
Numerische Mathematik | 2003年 / 95卷
关键词
Finite Element Method; Error Estimate; Convergence Rate; Tensor Product; Exponential Growth;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a finite-element-in-space, and quadrature-in-time-discretization of a compressible linear quasistatic viscoelasticity problem. The spatial discretization uses a discontinous Galerkin finite element method based on polynomials of degree r—termed DG(r)—and the time discretization uses a trapezoidal-rectangle rule approximation to the Volterra (history) integral. Both semi- and fully-discrete a priori error estimates are derived without recourse to Gronwall's inequality, and therefore the error bounds do not show exponential growth in time. Moreover, the convergence rates are optimal in both h and r providing that the finite element space contains a globally continuous interpolant to the exact solution (e.g. when using the standard ℙk polynomial basis on simplicies, or tensor product polynomials, ℚk, on quadrilaterals). When this is not the case (e.g. using ℙk on quadri-laterals) the convergence rate is suboptimal in r but remains optimal in h. We also consider a reduction of the problem to standard linear elasticity where similarly optimal a priori error estimates are derived for the DG(r) approximation.
引用
收藏
页码:347 / 376
页数:29
相关论文
共 10 条
[1]  
Babuška undefined(1987)undefined Mathematical Modelling and Numerical Analysis, 21 199-undefined
[2]  
Friedrichs undefined(1947)undefined Annals of Mathematics, 48 267-undefined
[3]  
Horgan undefined(1995)undefined SIAM Review, 37 491-undefined
[4]  
Oden undefined(1998)undefined J. Comput. Phys., 146 491-undefined
[5]  
Rivière undefined(1999)undefined Part I. Computational Geosciences, 3 337-undefined
[6]  
Shaw undefined(1997)undefined SIAM J. Numer. Anal., 34 1237-undefined
[7]  
Shaw undefined(1994)undefined Comput. Methods Appl. Mech. Engrg., 118 211-undefined
[8]  
Shaw undefined(1)undefined SIAM J. Numer. Anal, 38 80-undefined
[9]  
Shaw undefined(2001)undefined Numer. Math., 88 743-undefined
[10]  
Wheeler undefined(1978)undefined SIAM J. Numer. Anal., 15 152-undefined