An Ennola duality for subgroups of groups of Lie type

被引:0
作者
David A. Craven
机构
[1] University of Birmingham,
来源
Monatshefte für Mathematik | 2022年 / 199卷
关键词
Maximal subgroups; Ennola duality; Subgroup structure of groups; Representations of finite groups; 20C15; 20E28;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of Ennola duality for subgroups of finite groups of Lie type, relating subgroups of twisted and untwisted groups of the same type. Roughly speaking, one finds that subgroups H of GUd(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {GU}}_d(q)$$\end{document} correspond to subgroups of GLd(-q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {GL}}_d(-q)$$\end{document}, where -q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-q$$\end{document} is interpreted modulo |H|. Analogous results for types other than A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm A}$$\end{document} are established, including for those exceptional types where the maximal subgroups are known, although the result for type D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm D}$$\end{document} is still conjectural. Let M denote the Gram matrix of a non-zero orthogonal form for a real, irreducible representation of a finite group, and consider α=det(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\sqrt{\det (M)}$$\end{document}. If the representation has twice odd dimension, we conjecture that α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} lies in some cyclotomic field. This does not hold for representations of dimension a multiple of 4, with a specific example of the Janko group J1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm J_1}$$\end{document} in dimension 56 given. (This tallies with Ennola duality for representations, where type D2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm D_{2n}}$$\end{document} has no Ennola duality with 2D2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^2\mathrm D_{2n}$$\end{document}.)
引用
收藏
页码:785 / 799
页数:14
相关论文
共 2 条
[1]  
Ennola V(1963)On the characters of the finite unitary groups Ann. Acad. Sci. Fenn. Ser. A 323 35-572
[2]  
Turull A(1993)Schur index two and bilinear forms J. Algebra 157 562-undefined