Monadic Boolean algebras with an automorphism and their relation to Df2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Df}}_{\mathbf{2}}$$\end{document}-algebras

被引:0
作者
Aldo V. Figallo
Claudia M. Gomes
机构
[1] Universidad Nacional de San Juan,Departamento de Matemática, Instituto de Ciencias Básicas, Facultad de Filosofía, Humanidades y Artes
关键词
Monadic Boolean algebra; -algebra; Congruence; Subdirectly irreducible algebra; Discriminator variety;
D O I
10.1007/s00500-019-04317-4
中图分类号
学科分类号
摘要
In this work, we initiate an investigation of the class BTkm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_{T_km}$$\end{document} of monadic Boolean algebras endowed with a monadic automorphism of period k. These algebras constitute a generalization of monadic symmetric Boolean algebras. We determine the congruences on these algebras and we characterize the subdirectly irreducible algebras. This last result allows us to prove that BTkm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_{T_km}$$\end{document} is a discriminator variety and as a consequence, the principal congruences are characterized. Finally, we explore, in the finite case, the relationship between this class and the class Df2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Df}}_{\mathbf{2}}$$\end{document} of diagonal-free two-dimensional cylindric algebras.
引用
收藏
页码:227 / 236
页数:9
相关论文
共 50 条
[42]   Anti fuzzy filters of CI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CI$$\end{document}-algebras [J].
Rajab Ali Borzooei ;
Arsham Borumand Saeid ;
Akbar Rezaei ;
Reza Ameri .
Afrika Matematika, 2014, 25 (4) :1197-1210
[45]   Orthogonal-gradings on H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^*$$\end{document}-algebras [J].
Antonio J. Calderón ;
Cristina Draper ;
Cándido Martín ;
Daouda Ndoye .
Mediterranean Journal of Mathematics, 2018, 15 (1)
[49]   Family of Finite Blaschke Products in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-Algebras [J].
T. A. Grigoryan ;
A. Yu. Kuznetsova .
Mathematical Notes, 2025, 117 (3) :402-412
[50]   On the power-set Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-algebras [J].
Shengwei Han ;
Bin Zhao .
Semigroup Forum, 2016, 92 (1) :214-227