Automatic Continuity of Derivations on Semidirect Products of Banach Algebras

被引:0
作者
Hamid Farhadi
Hoger Ghahramani
机构
[1] University of Kurdistan,Department of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2021年 / 47卷
关键词
Semidirect product; Banach algebra; Derivation; Automatic continuity; 46H40; 46H25;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} and U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} be Banach algebras such that U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} is also a Banach A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document}-bimodule with compatible algebra operations, module actions and compatible norm. By defining an appropriate multiplication, we turn ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^1$$\end{document}-direct product A×U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}\times \mathcal {U}$$\end{document} into a Banach algebra so that A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} is a closed subalgebra and U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} is a closed ideal of it. This algebra is, in fact, the semidirect product of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} and U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} which we denote by A⋉U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A} < imes \mathcal {U}$$\end{document}. In this paper, we study automatic continuity of derivations on A⋉U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A} < imes \mathcal {U}$$\end{document} in a general setting. As an application of our results, we present various results about the automatic continuity of derivations of module extension Banach algebras and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-Lau products of Banach algebras. Some examples are also given.
引用
收藏
页码:1925 / 1946
页数:21
相关论文
共 36 条
[1]  
Aghababa HP(2016)Derivations on generalized semidirect products of Banach algebras Banach J. Math. Anal. 10 509-522
[2]  
Bade WG(1992)The Wedderburn decomposability of some commutative Banach algebras J. Funct. Anal. 107 105-121
[3]  
Dales HG(1994)On semidirect products of commutative Banach algebras Q. Math. 17 67-81
[4]  
Berndt O(1976)Point derivations on Bull. Lond. Math. Soc. 8 57-64
[5]  
Brown G(1977)Derivations of nest algebras Math. Ann. 229 155-161
[6]  
Moran W(2002)The amenability of measure algebras J. Lond. Math. Soc. 66 213-226
[7]  
Christensen E(1996)On derivations of seminest algebras Houst. J. Math. 22 375-398
[8]  
Dales HG(1996)Derivations of triangular Banach algebras Indiana Univ. Math. J. 45 441-462
[9]  
Ghahramani F(2013)Some notions of amenability for certain products of Banach algebras Colloq. Math. 130 147-157
[10]  
Helemskii A Ya(1968)Continuity of derivations and a problem of Kaplansky Am. J. Math. 90 1067-1073