Landau Damping: Paraproducts and Gevrey Regularity

被引:27
作者
Bedrossian J. [1 ]
Masmoudi N. [2 ]
Mouhot C. [3 ]
机构
[1] University of Maryland, College Park
[2] Courant Institute of Mathematical Sciences, New York
[3] Centre for Mathematical Sciences, University of Cambridge, Cambridge
基金
美国国家科学基金会;
关键词
Gevrey class; Landau damping; Nonlinear stability; Plasma physics; Vlasov equations;
D O I
10.1007/s40818-016-0008-2
中图分类号
学科分类号
摘要
We give a new, simpler, but also and most importantly more general and robust, proof of nonlinear Landau damping on Td in Gevrey-1s regularity (s> 1 / 3) which matches the regularity requirement predicted by the formal analysis of Mouhot and Villani [67]. Our proof combines in a novel way ideas from the original proof of Landau damping Mouhot and Villani [67] and the proof of inviscid damping in 2D Euler Bedrossian and Masmoudi [10]. As in Bedrossian and Masmoudi [10], we use paraproduct decompositions and controlled regularity loss along time to replace the Newton iteration scheme of Mouhot and Villani [67]. We perform time-response estimates adapted from Mouhot and Villani [67] to control the plasma echoes and couple them to energy estimates on the distribution function in the style of the work Bedrossian and Masmoudi [10]. We believe the work is an important step forward in developing a systematic theory of phase mixing in infinite dimensional Hamiltonian systems. © 2016, Springer International Publishing AG.
引用
收藏
相关论文
共 90 条
[1]  
Adams R.A., Fournier J.J.F., Sobolev Spaces. Pure and Applied Mathematics, vol. 140, (2003)
[2]  
Arendt W., Grabosch A., Greiner G., Groh U., Lotz H.P., Moustakas U., Nagel R., Neubrander F., Schlotterbeck U., One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, 1184, (1986)
[3]  
Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125, (1998)
[4]  
Backus G., Linearized plasma oscillations in arbitrary electron distributions, J. Math. Phys., 1, pp. 178-191, (1960)
[5]  
Bahouri H., Chemin J.-Y., Danchin R., Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343, (2011)
[6]  
Balmforth N.J., Morrison P.J., Normal modes and continuous spectra, Ann. N. Y. Acad. Sci., 773, 1, pp. 80-94, (1995)
[7]  
Balmforth N.J., Morrison P.J., Singular eigenfunctions for shearing fluids I, Institute for Fusion Studies Report. University of Texas-Austin, 692, pp. 1-80, (1995)
[8]  
Balmforth N.J., Morrison P.J., Hamiltonian description of shear flow, Large-Scale Atmosphere–Ocean Dynamics, Vol. II, pp. 117-142, (2002)
[9]  
Balmforth N.J., Morrison P.J., Thiffeault J.-L., Pattern Formation in Hamiltonian Systems with Continuous Spectra
[10]  
a Normal-Form Single-Wave Model, (2013)