TSCC: Two-Stage Combinatorial Clustering for virtual screening using protein-ligand interactions and physicochemical features

被引:0
|
作者
Daniel L Clinciu
Yen-Fu Chen
Cheng-Neng Ko
Chi-Chun Lo
Jinn-Moon Yang
机构
[1] National Chiao Tung University,Institute of Bioinformatics and Systems Biology
[2] National Chiao Tung University,Department of Biological Science and Technology
[3] National Chiao Tung University,Core Facility for Structural Bioinformatics
[4] National Chiao Tung University,Institute of Information Management
来源
BMC Genomics | / 11卷
关键词
Root Mean Square Deviation; Thymidine Kinase; Virtual Screening; Reference Threshold; Average Root Mean Square Deviation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 18 条
  • [1] TSCC: Two-Stage Combinatorial Clustering for virtual screening using protein-ligand interactions and physicochemical features
    Clinciu, Daniel L.
    Chen, Yen-Fu
    Ko, Cheng-Neng
    Lo, Chi-Chun
    Yang, Jinn-Moon
    BMC GENOMICS, 2010, 11
  • [2] Virtual screening based on protein-ligand interactions
    Hirayama, Noriaki
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2007, 127 (01): : 101 - 102
  • [3] Two-stage method for protein-ligand docking
    Hoffmann, D
    Kramer, B
    Washio, T
    Steinmetzer, T
    Rarey, M
    Lengauer, T
    JOURNAL OF MEDICINAL CHEMISTRY, 1999, 42 (21) : 4422 - 4433
  • [4] Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening
    Zavodszky, MI
    Sanschagrin, PC
    Korde, RS
    Kuhn, LA
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2002, 16 (12) : 883 - 902
  • [5] Virtual screening using protein-ligand docking: Avoiding artificial enrichment
    Verdonk, ML
    Berdini, V
    Hartshorn, MJ
    Mooij, WTM
    Murray, CW
    Taylor, RD
    Watson, P
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (03): : 793 - 806
  • [6] AutoDock Bias: improving binding mode prediction and virtual screening using known protein-ligand interactions
    Pablo Arcon, Juan
    Modenutti, Carlos P.
    Avendano, Demian
    Lopez, Elias D.
    Defelipe, Lucas A.
    Ambrosio, Francesca Alessandra
    Turjanski, Adrian G.
    Forli, Stefano
    Marti, Marcelo A.
    BIOINFORMATICS, 2019, 35 (19) : 3836 - 3838
  • [7] Improving The Efficiency of PSOVina for Protein-Ligand Docking By Two-Stage Local Search
    Tai, Hio Kuan
    Lin, Hang
    Siu, Shirley W. I.
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 770 - 777
  • [8] Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening
    Maria I. Zavodszky
    Paul C. Sanschagrin
    Leslie A. Kuhn
    Rajesh S. Korde
    Journal of Computer-Aided Molecular Design, 2002, 16 : 883 - 902
  • [9] Screening protein-ligand interactions using 1H NMR techniques for detecting the ligand
    Figueiredo, Isis Martins
    Marsaioli, Anita Jocelyne
    QUIMICA NOVA, 2007, 30 (07): : 1597 - 1605
  • [10] VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes
    Okuno, Tatsuya
    Kato, Koya
    Terada, Tomoki P.
    Sasai, Masaki
    Chikenji, George
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (06) : 1108 - 1119