An Improved Approximation Algorithm for the Minimum Cost Subset k-Connected Subgraph Problem

被引:0
作者
Bundit Laekhanukit
机构
[1] McGill University,
来源
Algorithmica | 2015年 / 72卷
关键词
Algorithms; Approximation algorithms; Graph connectivity; Network design; Subset ; -connected subgraph;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum cost subset k-connected subgraph problem is a cornerstone problem in the area of network design with vertex connectivity requirements. In this problem, we are given a graph G=(V,E) with costs on edges and a set of terminals T⊆V. The goal is to find a minimum cost subgraph such that every pair of terminals are connected by k openly (vertex) disjoint paths. In this paper, we present an approximation algorithm for the subset k-connected subgraph problem which improves on the previous best approximation guarantee of O(k2logk) by Nutov (ACM Trans. Algorithms 9(1):1, 2012). Our approximation guarantee, α(|T|), depends upon the number of terminals: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha(|T|) = \begin{cases} O(k \log^2 k) & \mbox{if } 2k\le |T|< k^2\\ O(k \log k) & \mbox{if } |T|\ge k^2 \end{cases} $$\end{document} So, when the number of terminals is large enough, the approximation guarantee improves significantly. Moreover, we show that, given an approximation algorithm for |T|=k, we can obtain almost the same approximation guarantee for any instances with |T|>k. This suggests that the hardest instances of the problem are when |T|≈k.
引用
收藏
页码:714 / 733
页数:19
相关论文
共 34 条
[1]  
Auletta V.(1999)A 2-approximation algorithm for finding an optimum 3-vertex-connected spanning subgraph J. Algorithms 32 21-30
[2]  
Dinitz Y.(2013)Steiner tree approximation via iterative randomized rounding J. ACM 60 6-1481
[3]  
Nutov Z.(2013)Approximation algorithms for minimum-cost SIAM J. Discrete Math. 27 1450-1055
[4]  
Parente D.(2003)-( SIAM J. Comput. 32 1050-636
[5]  
Byrka J.(2007), SIAM J. Discrete Math. 21 612-1109
[6]  
Grandoni F.(2012)) connected digraphs SIAM J. Comput. 41 1095-867
[7]  
Rothvoß T.(2006)An approximation algorithm for the minimum-cost J. Comput. Syst. Sci. 72 838-60
[8]  
Sanità L.(2001)-vertex connected subgraph Combinatorica 21 39-450
[9]  
Cheriyan J.(1996)Approximation algorithms for network design with metric costs J. Algorithms 21 434-720
[10]  
Laekhanukit B.(2004)An SIAM J. Comput. 33 704-257