共 98 条
[61]
Kamenski P., Kolesnikova O., Jubenot V., Entelis N., Krasheninnikov I.A., Martin R.P., Tarassov I., Evidence for an adaptation mechanism of mitochondrial translation via tRNA import from the cytosol, Mol Cell, 26, 5, pp. 625-637, (2007)
[62]
Tonin Y., Heckel A.-M., Vysokikh M., Dovydenko I., Meschaninova M., Rotig A., Munnich A., Venyaminova A., Tarassov I., Entelis N., Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA, J Biol Chem, 289, 19, pp. 13323-13334, (2014)
[63]
Jo A., Ham S., Lee G.H., Lee Y.I., Kim S., Lee Y.S., Shin J.H., Lee Y., Efficient mitochondrial genome editing by CRISPR/Cas9, BioMed Res Int, (2015)
[64]
Gammage P.A., Moraes C.T., Minczuk M., Mitochondrial genome engineering: the revolution may not be CRISPR-Ized, Trends Genet, 34, 2, pp. 101-110, (2018)
[65]
Verechshagina N., Nikitchina N., Yamada Y., Harashima H., Tanaka M., Orishchenko K., Mazunin I., Future of human mitochondrial DNA editing technologies, Mitochondrial DNA Part A, 30, 2, pp. 214-221, (2019)
[66]
Gao L., Cox D.B., Yan W.X., Manteiga J.C., Schneider M.W., Yamano T., Nishimasu H., Nureki O., Crosetto N., Zhang F., Engineered Cpf1 variants with altered PAM specificities, Nat Biotechnol, 35, 8, pp. 789-792, (2017)
[67]
Komor A.C., Badran A.H., Liu D.R., CRISPR-based technologies for the manipulation of eukaryotic genomes, Cell, 168, 1-2, pp. 20-36, (2017)
[68]
Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R., Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage, Nature, 551, 7681, pp. 464-471, (2017)
[69]
Santos J., Sousa F., Queiroz J., Costa D., Rhodamine based plasmid DNA nanoparticles for mitochondrial gene therapy, Colloids Surf B, 121, pp. 129-140, (2014)
[70]
Kogure K., Akita H., Yamada Y., Harashima H., Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system, Adv Drug Deliv Rev, 60, 4-5, pp. 559-571, (2008)