DOMAINS OF HOLOMORPHY FOR IRREDUCIBLE ADMISSIBLE UNIFORMLY BOUNDED BANACH REPRESENTATIONS OF SIMPLE LIE GROUPS

被引:0
作者
G. LIU
A. PARTHASARATHY
机构
[1] Université de Lorraine,Institut Élie Cartan de Lorraine
[2] Universität Paderborn,Institut für Mathematik
来源
Transformation Groups | 2018年 / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we address a question raised by B. Krötz on the classification of G-invariant domains of holomorphy for irreducible admissible Banach representations of connected non-compact simple real linear Lie groups G. When G is not of Hermitian type, we give a complete description of such G-invariant domains for irreducible admissible uniformly bounded representations on reflexive Banach spaces and, in particular, for all irreducible uniformly bounded Hilbert representations. When the group G is Hermitian, we determine such G-invariant domains only when the representations considered are highest or lowest weight representations.
引用
收藏
页码:755 / 764
页数:9
相关论文
共 19 条
[1]  
Akhiezer D(1990) (T) Math. Ann. 286 1-12
[2]  
Gindikin S(2007), Groups Acta Math. 198 57-105
[3]  
Bader U(2017)undefined Geom. Dyn. 11 1003-1039
[4]  
Furman A(2014)undefined Israel J. Math. 199 45-111
[5]  
Gelander T(1978)undefined Ann. of Math. 107 209-234
[6]  
Monod N(1987)undefined Trans. Am. Math. Soc. 304 171-192
[7]  
Bader U(2008)undefined Geom. Funct. Anal. 18 1326-1421
[8]  
Gelander T(2008)undefined Invent. Math. 172 277-288
[9]  
Bernstein J(2004)undefined Ann. of Math. 159 641-724
[10]  
Krötz B(1987)undefined J. Reine Angew. Math. 380 108-165