Double interlacing between zeros of modular forms

被引:0
作者
Hui Xue
Daozhou Zhu
机构
[1] Clemson University,School of Mathematical and Statistical Sciences
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Eisenstein series; Zeros of modular forms; Doubly interlace; 11F11; 11F03;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 10$$\end{document} be even. We prove that the j-invariants of the non-elliptic zeros of aE2k(z)-Ek2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$aE_{2k}(z)-E_k^2(z)$$\end{document} for a>2.63\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>2.63$$\end{document} andbE2k(z)+Ek2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$bE_{2k}(z)+E_k^2(z)$$\end{document} for b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document} are real and doubly interlace.
引用
收藏
页码:463 / 483
页数:20
相关论文
共 27 条
[1]  
Griffin T(2021)Interlacing of zeros of Eisenstein series Kyushu J. Math. 75 249-272
[2]  
Kenshur N(2021)Monomials of Eisenstein series J. Number Theory 219 445-459
[3]  
Price A(2010)Mass equidistribution for Hecke eigenforms Ann. Math. 172 1517-1528
[4]  
Vandenberg-daves B(2014)Interlacing of zeros of weakly holomorphic modular forms Proc. Am. Math. Soc. Ser. B 1 63-77
[5]  
Xue H(2012)Interlacing property of the zeros of Proc. Am. Math. Soc. 140 3385-3396
[6]  
Zhu D(2019)Zeros of certain combinations of Eisenstein series of weight J. Number Theory 198 124-138
[7]  
Griffin T(2008), Bull. Lond. Math. Soc. 40 26-36
[8]  
Kenshur N(1970), and Bull. Lond. Math. Soc. 2 169-170
[9]  
Price A(2017)A separation property of the zeros of Eisenstein series for Mathematika 63 666-695
[10]  
Vandenberg-Daves B(2005)On the zeros of Eisenstein series Int. Math. Res. Not. 34 2059-2074