Exceptional set in Waring–Goldbach problem: Two squares, two cubes and two sixth powers

被引:0
作者
Yuhui Liu
机构
[1] Tongji University,School of Mathematical Sciences
来源
Proceedings - Mathematical Sciences | 2020年 / 130卷
关键词
Waring–Goldbach problem; exceptional set; Hardy–Littlewood method; 11P05; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let R(n) denote the number of representations of an even integer n as the sum of two squares, two cubes and two sixth powers of primes, and by E(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}(N)$$\end{document} we denote the number of even integers n⩽N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \leqslant N$$\end{document} such that the expected asymptotic formula for R(n) fails to hold. In this paper, it is proved that E(N)≪N127288+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}(N) \ll N^{\frac{127}{288} + \varepsilon }$$\end{document} for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}.
引用
收藏
相关论文
共 5 条
  • [1] Lü XD(2015)Exceptional sets in warings problem: two squares, two cubes and two sixth powers Taiwanese J. Math. 19 1359-1368
  • [2] Mu QW(2003)Slim exceptional sets and the asymptotic formula in Waring’s problem Math. Proc. Cambridge Philos. Soc. 134 193-206
  • [3] Wooley TD(2013)On Waring’s problem: some consequences of Golubeva’s method J. London Math. Soc. 88 699-715
  • [4] Wooley TD(2014)On Waring’s problem: two squares, two cubes and two sixth powers Quart. J. Math. 65 305-317
  • [5] Wooley TD(undefined)undefined undefined undefined undefined-undefined