Well-posedness result for the Kuramoto–Velarde equation

被引:0
|
作者
Giuseppe Maria Coclite
Lorenzo di Ruvo
机构
[1] Politecnico di Bari,Dipartimento di Meccanica, Matematica e Management
[2] Università di Bari,Dipartimento di Matematica
来源
Bollettino dell'Unione Matematica Italiana | 2021年 / 14卷
关键词
Existence; Uniqueness; Stability; Kuramoto–Velarde equation; Cauchy problem; 35G25; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
The Kuramoto–Velarde equation describes slow space-time variations of disturbances at interfaces, diffusion–reaction fronts and plasma instability fronts. It also describes Benard–Marangoni cells that occur when there is large surface tension on the interface in a microgravity environment. Under appropriate assumption on the initial data, of the time T, and the coefficients of such equation, we prove the well-posedness of the classical solutions for the Cauchy problem, associated with this equation.
引用
收藏
页码:659 / 679
页数:20
相关论文
共 50 条
  • [41] Well-posedness for the nonlocal nonlinear Schrodinger equation
    Peres de Moura, Roger
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 1254 - 1267
  • [42] On the well-posedness of generalized Darcy–Forchheimer equation
    Johnson D. Audu
    Faisal A. Fairag
    Salim A. Messaoudi
    Boundary Value Problems, 2018
  • [43] On well-posedness of the semilinear heat equation on the sphere
    Punzo, Fabio
    JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (03) : 571 - 592
  • [44] The Well-posedness of A Special Partial Differential Equation
    Hong, Jialin
    Yin, Xiuling
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1769 - 1771
  • [45] A well-posedness result for hyperbolic operators with Zygmund coefficients
    Colombini, Ferruccio
    Del Santo, Daniele
    Fanelli, Francesco
    Metivier, Guy
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (04): : 455 - 475
  • [46] Sharp well-posedness results for the BBM equation
    Bona, Jerry L.
    Tzvetkov, Nikolay
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (04) : 1241 - 1252
  • [47] ON WELL-POSEDNESS OF THE DEGASPERIS-PROCESI EQUATION
    Himonas, A. Alexandrou
    Holliman, Curtis
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (02) : 469 - 488
  • [48] Well-posedness problem of an anisotropic parabolic equation
    Zhan, Huashui
    Feng, Zhaosheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (02) : 389 - 413
  • [49] A Note on the Local Well-Posedness for the Whitham Equation
    Ehrnstrom, Mats
    Escher, Joachim
    Pei, Long
    ELLIPTIC AND PARABOLIC EQUATIONS, 2015, 119 : 63 - 75
  • [50] ON WELL-POSEDNESS OF A MIXED PROBLEM FOR THE WAVE EQUATION
    Gordienko, V. M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : C130 - C138