Well-posedness result for the Kuramoto–Velarde equation

被引:0
|
作者
Giuseppe Maria Coclite
Lorenzo di Ruvo
机构
[1] Politecnico di Bari,Dipartimento di Meccanica, Matematica e Management
[2] Università di Bari,Dipartimento di Matematica
来源
Bollettino dell'Unione Matematica Italiana | 2021年 / 14卷
关键词
Existence; Uniqueness; Stability; Kuramoto–Velarde equation; Cauchy problem; 35G25; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
The Kuramoto–Velarde equation describes slow space-time variations of disturbances at interfaces, diffusion–reaction fronts and plasma instability fronts. It also describes Benard–Marangoni cells that occur when there is large surface tension on the interface in a microgravity environment. Under appropriate assumption on the initial data, of the time T, and the coefficients of such equation, we prove the well-posedness of the classical solutions for the Cauchy problem, associated with this equation.
引用
收藏
页码:659 / 679
页数:20
相关论文
共 50 条