Well-posedness result for the Kuramoto–Velarde equation

被引:0
|
作者
Giuseppe Maria Coclite
Lorenzo di Ruvo
机构
[1] Politecnico di Bari,Dipartimento di Meccanica, Matematica e Management
[2] Università di Bari,Dipartimento di Matematica
来源
Bollettino dell'Unione Matematica Italiana | 2021年 / 14卷
关键词
Existence; Uniqueness; Stability; Kuramoto–Velarde equation; Cauchy problem; 35G25; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
The Kuramoto–Velarde equation describes slow space-time variations of disturbances at interfaces, diffusion–reaction fronts and plasma instability fronts. It also describes Benard–Marangoni cells that occur when there is large surface tension on the interface in a microgravity environment. Under appropriate assumption on the initial data, of the time T, and the coefficients of such equation, we prove the well-posedness of the classical solutions for the Cauchy problem, associated with this equation.
引用
收藏
页码:659 / 679
页数:20
相关论文
共 50 条
  • [21] On the well-posedness of Galbrun's equation
    Hagg, Linus
    Berggren, Martin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 150 : 112 - 133
  • [22] Well-Posedness of a Parabolic Equation with Involution
    Ashyralyev, Allaberen
    Sarsenbi, Abdizhahan
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (10) : 1295 - 1304
  • [23] LOCAL WELL-POSEDNESS FOR KAWAHARA EQUATION
    Kato, Takamori
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (3-4) : 257 - 287
  • [24] Well-posedness for a perturbation of the KdV equation
    Carvajal, X.
    Esquivel, L.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06):
  • [25] On the well-posedness of the hyperelastic rod equation
    Inci, Hasan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (03) : 795 - 802
  • [26] WELL-POSEDNESS OF AN ELLIPTIC EQUATION WITH INVOLUTION
    Ashyralyev, Allaberen
    Sarsenbi, Abdizhahan M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [27] Unconditional well-posedness for the Kawahara equation
    Geba, Dan-Andrei
    Lin, Bai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (02)
  • [28] Well-posedness for the Stochastic Novikov equation
    Lv, Wujun
    He, Ping
    Wang, Qinghua
    STATISTICS & PROBABILITY LETTERS, 2019, 153 : 157 - 163
  • [29] On the Gevrey well-posedness of the Kirchhoff equation
    Matsuyama, Tokio
    Ruzhansky, Michael
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01): : 449 - 468
  • [30] On the well-posedness of the inviscid SQG equation
    Inci, H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 2660 - 2683