Existence of strong solutions for the generalized nonhomogeneous Navier–Stokes–Landau–Lifshitz system

被引:0
|
作者
Hui Liu
Hongjun Gao
机构
[1] Qufu Normal University,School of Mathematical Sciences
[2] Southeast University,School of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2021年 / 72卷
关键词
Navier–Stokes–Landau–Lifshitz system; Strong solution; Existence; 35Q35; 35B65; 35D35;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized nonhomogeneous Navier–Stokes–Landau–Lifshitz system is considered in this paper. The generalized nonhomogeneous Navier–Stokes–Landau–Lifshitz system is a coupling between the generalized Navier–Stokes equations and generalized Landau–Lifshitz system. Existence and uniqueness of strong solutions for the generalized nonhomogeneous Navier–Stokes–Landau–Lifshitz system with initial vacuum are proved.
引用
收藏
相关论文
共 50 条
  • [31] On the regular solutions for a generalized compressible Landau-Lifshitz-Bloch equation
    Ayouch, C.
    Benmouane, M.
    Essoufi, El-H.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (02) : 997 - 1021
  • [32] GLOBAL STRONG SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES SYSTEM WITH POTENTIAL TEMPERATURE TRANSPORT
    Zhai, Xiaoping
    Li, Yongsheng
    Zhou, Fujun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (08) : 2247 - 2260
  • [33] On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations
    Duan, Ning
    Zhao, Xiaopeng
    AIMS MATHEMATICS, 2020, 5 (06): : 6457 - 6463
  • [34] GLOBAL STRONG SOLUTION AND EXPONENTIAL DECAY FOR NONHOMOGENEOUS NAVIER-STOKES AND MAGNETOHYDRODYNAMIC EQUATIONS
    Zhong, Xin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (07): : 3563 - 3578
  • [35] Strong Solutions of the Incompressible Navier-Stokes-Voigt Model
    Baranovskii, Evgenii S.
    MATHEMATICS, 2020, 8 (02)
  • [36] Existence and finite time approximation of strong solutions to 2D g-Navier-Stokes equations
    Anh C.T.
    Quyet D.T.
    Tinh D.T.
    Acta Mathematica Vietnamica, 2013, 38 (3) : 413 - 428
  • [37] On local strong solutions to the three-dimensional nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum
    Lu, Boqiang
    Song, Sisi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 : 58 - 81
  • [38] Strong solutions of the Navier-Stokes equations in aperture domains
    Franzke M.
    Annali dell’Università di Ferrara, 2000, 46 (1): : 161 - 173
  • [39] Global existence of weak solutions to the Navier-Stokes-Korteweg equations
    Antonelli, Paolo
    Spirito, Stefano
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (01): : 171 - 200
  • [40] Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities
    Li, Yinghua
    Huang, Mingxia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):