Value at risk (VaR) analysis for fat tails and long memory in returns

被引:8
作者
Günay S. [1 ]
机构
[1] Finance Department, American University of the Middle East, Eqaila
关键词
Alpha stable distributions; Backtesting; Long memory; Turkish stock market; Value at risk;
D O I
10.1007/s40822-017-0067-z
中图分类号
学科分类号
摘要
In this study, different value at risk models (VaR), which are used to measure downside investment risk, have been analyzed under different methods and stylized facts of financial time series. Downside investment risk of a single asset and of a hypothetical portfolio have first been measured by conventional VaR models (Parametrical VaR, Historical VaR, Historical Simulation VaR and Monte Carlo Simulation VaR) and then by alternative simulation models that consider fat tails (Alpha-Stable Simulation VaR) in return distributions and long memory in returns (Long Memory Simulation VaR). Empirical findings and the Duration Based Backtesting procedure indicate that the largest VaR value is obtained under Long Memory Simulation VaR that is based on the long memory in returns. This result is consistent with the findings of Mandelbrot’s various studies. © 2017, Eurasia Business and Economics Society.
引用
收藏
页码:215 / 230
页数:15
相关论文
共 42 条
[1]  
Abry P., Veitch D., Wavelet analysis of long-range-dependent traffic, IEEE Transactions on Information Theory, 44, 1, pp. 2-15, (1998)
[2]  
Akdugan U., Akin Y.K., Parametrik riske maruz deger hesaplamasinda volatilitenin modellenmesi: Turkiye’de emeklilik yatirim fonlari uzerine bir uygulama (Volatility modelling in parametric value at risk calculation: an application on pension funds in Turkey), (2013)
[3]  
Aktas O., Sjostrand M., Cornish–fisher expansion and value-at-risk method in application to risk management of large portfolios. Technical report, IDE1112, pp. 1-94, (2011)
[4]  
Altayligil Y.B., Graw ve Ewma ile riske maruz deger: altin getirisi icin bir uygulama (Value at risk with Graw and Ewma: an application for gold returns), Sosyal Bilimler Dergisi, 1, pp. 33-41, (2008)
[5]  
Arik A., Bulut B., Sucu M., Finansal risklerin uc deger kurami ile olculmesi (Measuring financial risks with extreme value theory), Bilim Teknoloji Dergisi A-Uygulamali Bilimler ve Muhendislik, 14, 2, pp. 119-134, (2013)
[6]  
Bachelier L., Théorie de la speculation. Annales Scientifiques de L’École Normale Supérieure, 17, 21–86 (English translation by A. J. Boness (1964) In P. H. Cootner (Ed.), The random character of stock market prices (pp. 17–75). Cambridge: MIT Press), (1900)
[7]  
Bostanci A., Korkmaz T., Bankaların Sermaye Yeterliliği Oranı Açısından Riske Maruz Değer Hesaplama Yöntemlerinin Karşılaştırılması (Comparison of value at risk calculation models in terms of banks’ capital adequacy ratio), Business and Economics Research Journal, 5, 3, pp. 15-41, (2014)
[8]  
Bulut E., Gul Z.B., Parametrik riske maruz deger yontemi ile doviz kuru riski yonetimi: Turkiye ornegi (Currency risk management with parametric value at risk method: Turkey example), Ekonomik Yaklasim, 13, 45, pp. 72-92, (2004)
[9]  
Candelon B., Colletaz G., Hurlin C., Tokpavi S., Backtesting value-at-risk: A GMM duration-based test, Journal of Financial Econometrics, 9, pp. 314-343, (2011)
[10]  
Catal D., Albayrak R.S., Riske maruz deger hesabinda karisim kopula kullanimi: dolar-euro portfoyu (Use of mixture capula in value at risk: dollar-euro portfolio), Journal of Yasar University, 8, 31, pp. 5187-5202, (2013)