RXRγ attenuates cerebral ischemia–reperfusion induced ferroptosis in neurons in mice through transcriptionally promoting the expression of GPX4

被引:0
|
作者
Lei Yang
Baoshun Du
Shitao Zhang
Maode Wang
机构
[1] The First Affiliated Hospital of Xi’an Jiaotong University,Department of Neurosurgery
[2] The Second Affiliated Hospital of Xi’an Medical University,Department of Neurosurgery
[3] Xinxiang Central Hospital,Second Department of Neurosurgery
[4] the Affiliated Hospital of Northwest University,Department of Neurosurgery, Xi’an No.3 hospital
来源
Metabolic Brain Disease | 2022年 / 37卷
关键词
RXRγ; Ischemia–reperfusion; Ferroptosis; GPX4; Mice;
D O I
暂无
中图分类号
学科分类号
摘要
Cerebral ischemia is a common cerebrovascular disease with high mortality and disability rate. Exploring its mechanism is essential for developing effective treatment for cerebral ischemia. Therefore, this study aims to explore the regulatory effect and mechanism of retinoid X receptor γ (RXRγ) on cerebral ischemia–reperfusion (I/R) injury. A mouse intraluminal middle cerebral artery occlusion model was established, and PC12 cells were exposed to anaerobic/reoxygenation (A/R) as an in vitro model in this study. Cerebral I/R surgery or A/R treatment induced ferroptosis, downregulated RXRγ and GPX4 (glutathione peroxidase 4) levels, upregulated cyclooxygenase-2 (COX-2) level and increased ROS (reactive oxygen species) level in A/R induced cells or I/R brain tissues in vivo or PC12 cells in vitro. Knockdown of RXRγ downregulated GPX4 and increased COX-2 and ROS levels in A/R induced cells. RXRγ overexpression has the opposite effect. GPX4 knockdown reversed the improvement of RXRγ overexpression on COX-2 downregulation, GPX4 upregulation and ferroptosis in PC12 cells. Furthermore, chromatin immunoprecipitation (ChIP) and luciferase reporter gene assays revealed that RXRγ bound to GPX4 promoter region and activated its transcription. Overexpression of RXRγ or GPX4 alleviated brain damage and inhibited ferroptosis in I/R mice. In conclusion, RXRγ-mediated transcriptional activation of GPX4 might inhibit ferroptosis during I/R-induced brain injury.
引用
收藏
页码:1351 / 1363
页数:12
相关论文
共 50 条
  • [41] Impaired GPX4 activity elicits ferroptosis in alveolar type II cells promoting PHMG-induced pulmonary fibrosis development
    Zhang, Wanjun
    Sun, Zhaolong
    Cheng, Wenting
    Li, Xin
    Zhang, Jianzhong
    Li, Yanting
    Tan, Haining
    Ji, Xiaoya
    Zhang, Lin
    Tang, Jinglong
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 281
  • [42] The role and possible mechanism of the ferroptosis-related SLC7A11/GSH/GPX4 pathway in myocardial ischemia-reperfusion injury
    Chen, Bingxin
    Fan, Ping
    Song, Xue
    Duan, Mingjun
    BMC CARDIOVASCULAR DISORDERS, 2024, 24 (01):
  • [43] LoxBlock-1 or Curcumin attenuates liver, pancreas and cardiac ferroptosis, oxidative stress and injury in Ischemia/reperfusion-damaged rats by facilitating ACSL/GPx4 signaling
    Kar, Fatih
    Yildiz, Fatma
    Hacioglu, Ceyhan
    Kar, Ezgi
    Donmez, Dilek Burukoglu
    Senturk, Hakan
    Kanbak, Gungor
    TISSUE & CELL, 2023, 82
  • [44] Puerarin Alleviates Cerebral Ischemia-Reperfusion Injury by Inhibiting Ferroptosis Through SLC7A11/GPX4/ACSL4 Axis and Alleviate Pyroptosis Through Caspase-1/GSDMD Axis
    Huang, Ying
    Yang, Jiehong
    Lu, Ting
    Shao, Chongyu
    Wan, Haitong
    MOLECULAR NEUROBIOLOGY, 2025,
  • [45] Pentoxifylline protects against cerebral ischaemia-reperfusion injury through ferroptosis regulation via the Nrf2/SLC7A11/GPX4 signalling pathway
    Li, Pei
    Chen, Jun -Min
    Ge, Shi-Hao
    Sun, Mei-Lin
    Lu, Jun-Dong
    Liu, Fan
    Wang, Le -Le
    Zhang, Xin
    Wang, Xiao-Peng
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2024, 967
  • [46] USP15 as a Potential Therapeutic Target in Cerebral Ischemia: Modulation of Ferroptosis and Cognitive Dysfunction via the Nrf2/GPX4 Axis in Mice
    Yi, Haoran
    Xiao, Xingpeng
    Lei, Fan
    Zhang, Fan
    NEUROMOLECULAR MEDICINE, 2024, 26 (01)
  • [47] Hydroxysafflor Yellow A Alleviates Acute Myocardial Ischemia/Reperfusion Injury in Mice by Inhibiting Ferroptosis via the Activation of the HIF-1α/SLC7A11/GPX4 Signaling Pathway
    Ge, Chaowen
    Peng, Yuqin
    Li, Jiacheng
    Wang, Lei
    Zhu, Xiaoyu
    Wang, Ning
    Yang, Dongmei
    Zhou, Xian
    Chang, Dennis
    NUTRIENTS, 2023, 15 (15)
  • [48] Astaxanthin Inhibits Ferroptosis of Hippocampal Neurons in Kainic Acid-Induced Epileptic Mice by Activating the Nrf2/GPX4 Signaling Pathway
    Chen, Shihao
    Zhao, Linqian
    Jin, Xing
    Liu, Qichang
    Xiao, Yuqing
    Xu, Huiqin
    CNS NEUROSCIENCE & THERAPEUTICS, 2025, 31 (02)
  • [49] Propofol Inhibits Ferroptotic Cell Death Through the Nrf2/Gpx4 Signaling Pathway in the Mouse Model of Cerebral Ischemia–Reperfusion Injury
    Gui-bo Fan
    Yan Li
    Gao-shuo Xu
    A.-yang Zhao
    Hong-jiang Jin
    Si-qi Sun
    Si-hua Qi
    Neurochemical Research, 2023, 48 : 956 - 966
  • [50] Berberine modulates gut microbiota to attenuate cerebral ferroptosis induced by ischemia-reperfusion in mice
    Wang, Xinyu
    Zhang, Jiamin
    Wang, Sisi
    Song, Zhengyang
    Sun, Hongxia
    Wu, Fangquan
    Lin, Xiaohui
    Jin, Keke
    Jin, Xiaofeng
    Wang, Wantie
    Lin, Qiongqiong
    Wang, Fangyan
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2023, 953