Non-parametric copulas for circular–linear and circular–circular data: an application to wind directions

被引:0
|
作者
Jose A. Carnicero
M. Concepción Ausín
Michael P. Wiper
机构
[1] Hospital Virgen del Valle,Sección de Geriatría
[2] Universidad Carlos III de Madrid,Departamento de Estadística
来源
Stochastic Environmental Research and Risk Assessment | 2013年 / 27卷
关键词
Bernstein polynomials; Circular distributions; Circular–circular data; Circular–linear data; Copulas; Non-parametric estimation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a nonparametric approach to estimating the dependence relationships between circular variables and other circular or linear variables using copulas. The proposed method is based on the use of Bernstein copulas which are a very flexible class of non-parametric copulas which allows for the approximation of any kind of dependence structure, including non symmetric relationships. In particular, we present a simple procedure to adapt Bernstein copulas to the circular framework and guarantee that the constructed bivariate distributions are strictly continuous. We provide two illustrative case studies, the first on the relation between wind direction and quantity of rainfall in the North of Spain and the second on the dependence between the wind directions in two nearby buoys at the Atlantic ocean.
引用
收藏
页码:1991 / 2002
页数:11
相关论文
共 43 条
  • [31] A non-parametric calibration of the HJM geometry: an application of Ito calculus to financial statistics
    Malliavin, Paul
    Mancino, Maria Elvira
    Recchioni, Maria Cristina
    JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01): : 55 - 77
  • [32] Estimation of the Non-Parametric Spatial Dynamic Panel Data Model with Fixed Effects
    Zhang, Mengqi
    Tian, Boping
    MATHEMATICS, 2023, 11 (13)
  • [33] Non-parametric estimator of a multivariate madogram for missing-data and extreme value framework
    Boulin, Alexis
    Di Bernardino, Elena
    Laloe, Thomas
    Toulemonde, Gwladys
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [34] A non-parametric monotone maximum likelihood estimator of time trend for repairable system data
    Heggland, Knut
    Lindqvist, Bo H.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2007, 92 (05) : 575 - 584
  • [35] NON-PARAMETRIC DATA-DEPENDENT ESTIMATION OF SPECTROSCOPIC ECHO-TRAIN SIGNALS
    Kronvall, Ted
    Sward, Johan
    Jakobsson, Andreas
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6259 - 6263
  • [36] Non-parametric estimation of Kullback-Leibler discrimination information based on censored data
    Sathar, Abdul E., I
    Viswakala, K. V.
    STATISTICS & PROBABILITY LETTERS, 2019, 154
  • [37] A Non-parametric Conditional Bivariate Reference Region with an Application to Height/Weight Measurements on Normal Girls
    Petersen, Jorgen Holm
    BIOMETRICAL JOURNAL, 2009, 51 (04) : 697 - 709
  • [38] Ship valuation using cross-sectional sales data: A multivariate non-parametric approach
    Adland R.
    Koekebakker S.
    Maritime Economics & Logistics, 2007, 9 (2) : 105 - 118
  • [39] Non-parametric estimation of bivariate reliability from incomplete two-dimensional warranty data
    Gupta, Sanjib Kumar
    Bhattacharya, Debasis
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 222
  • [40] Non-parametric estimation of particle size distribution from spectral extinction data with PCA approach
    He, Zhenzong
    Mao, Junkui
    Han, Xingsi
    POWDER TECHNOLOGY, 2018, 325 : 510 - 518