Non-parametric copulas for circular–linear and circular–circular data: an application to wind directions

被引:0
|
作者
Jose A. Carnicero
M. Concepción Ausín
Michael P. Wiper
机构
[1] Hospital Virgen del Valle,Sección de Geriatría
[2] Universidad Carlos III de Madrid,Departamento de Estadística
来源
Stochastic Environmental Research and Risk Assessment | 2013年 / 27卷
关键词
Bernstein polynomials; Circular distributions; Circular–circular data; Circular–linear data; Copulas; Non-parametric estimation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a nonparametric approach to estimating the dependence relationships between circular variables and other circular or linear variables using copulas. The proposed method is based on the use of Bernstein copulas which are a very flexible class of non-parametric copulas which allows for the approximation of any kind of dependence structure, including non symmetric relationships. In particular, we present a simple procedure to adapt Bernstein copulas to the circular framework and guarantee that the constructed bivariate distributions are strictly continuous. We provide two illustrative case studies, the first on the relation between wind direction and quantity of rainfall in the North of Spain and the second on the dependence between the wind directions in two nearby buoys at the Atlantic ocean.
引用
收藏
页码:1991 / 2002
页数:11
相关论文
共 43 条
  • [21] A Non-parametric Test of Exchangeability for Extreme-Value and Left-Tail Decreasing Bivariate Copulas
    Kojadinovic, Ivan
    Yan, Jun
    SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (03) : 480 - 496
  • [22] Wrapped Geometric Distribution: A new Probability Model for Circular Data
    Jacob, Sophy
    Jayakumar, K.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2013, 12 (04): : 348 - 355
  • [23] Non-parametric estimation of the diffusion coefficient from noisy data
    Emeline Schmisser
    Statistical Inference for Stochastic Processes, 2012, 15 (3) : 193 - 223
  • [24] Wrapped Geometric Distribution: A new Probability Model for Circular Data
    Sophy Jacob
    K. Jayakumar
    Journal of Statistical Theory and Applications, 2013, 12 (4): : 348 - 355
  • [25] Non-parametric drift estimation for diffusions from noisy data
    Schmisser, Emeline
    STATISTICS & RISK MODELING, 2011, 28 (02) : 119 - 150
  • [26] Solvency II and diversification effect for non-life premium and reserves risk: new results based on non-parametric copulas
    Krystian Szczęsny
    Stanisław Wanat
    Anna Denkowska
    Risk Management, 2023, 25
  • [27] Solvency II and diversification effect for non-life premium and reserves risk: new results based on non-parametric copulas
    Szczesny, Krystian
    Wanat, Stanislaw
    Denkowska, Anna
    RISK MANAGEMENT-AN INTERNATIONAL JOURNAL, 2023, 25 (03):
  • [28] Application of the LSQR algorithm in non-parametric estimation of aerosol size distribution
    He, Zhenzong
    Qi, Hong
    Lew, Zhongyuan
    Ruan, Liming
    Tan, Heping
    Luo, Kun
    OPTICS COMMUNICATIONS, 2016, 366 : 154 - 162
  • [29] THE BROKEN AXIS APPROACH - A NEW WAY TO ANALYZE BIDIRECTIONAL CIRCULAR DATA
    HOLMQUIST, B
    SANDBERG, R
    EXPERIENTIA, 1991, 47 (08): : 845 - 851
  • [30] A non-parametric calibration of the HJM geometry: an application of Itô calculus to financial statistics
    Paul Malliavin
    Maria Elvira Mancino
    Maria Cristina Recchioni
    Japanese Journal of Mathematics, 2007, 2 : 55 - 77