Non-parametric copulas for circular–linear and circular–circular data: an application to wind directions

被引:0
|
作者
Jose A. Carnicero
M. Concepción Ausín
Michael P. Wiper
机构
[1] Hospital Virgen del Valle,Sección de Geriatría
[2] Universidad Carlos III de Madrid,Departamento de Estadística
来源
Stochastic Environmental Research and Risk Assessment | 2013年 / 27卷
关键词
Bernstein polynomials; Circular distributions; Circular–circular data; Circular–linear data; Copulas; Non-parametric estimation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a nonparametric approach to estimating the dependence relationships between circular variables and other circular or linear variables using copulas. The proposed method is based on the use of Bernstein copulas which are a very flexible class of non-parametric copulas which allows for the approximation of any kind of dependence structure, including non symmetric relationships. In particular, we present a simple procedure to adapt Bernstein copulas to the circular framework and guarantee that the constructed bivariate distributions are strictly continuous. We provide two illustrative case studies, the first on the relation between wind direction and quantity of rainfall in the North of Spain and the second on the dependence between the wind directions in two nearby buoys at the Atlantic ocean.
引用
收藏
页码:1991 / 2002
页数:11
相关论文
共 43 条
  • [11] Exploring wind direction and SO2 concentration by circular-linear density estimation
    Garcia-Portugues, E.
    Crujeiras, R. M.
    Gonzalez-Manteiga, W.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (05) : 1055 - 1067
  • [12] A non-parametric approach to non-linear causality testing
    Bell, D
    Kay, J
    Malley, J
    ECONOMICS LETTERS, 1996, 51 (01) : 7 - 18
  • [13] Density estimation of circular data with Bernstein polynomials
    Carnicero, J. A.
    Wiper, M. P.
    Ausin, M. G.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (02): : 273 - 286
  • [14] Nonparametric circular methods for exploring environmental data
    Oliveira, Maria
    Crujeiras, Rosa M.
    Rodriguez-Casal, Alberto
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2013, 20 (01) : 1 - 17
  • [15] Nonparametric circular methods for exploring environmental data
    María Oliveira
    Rosa M. Crujeiras
    Alberto Rodríguez-Casal
    Environmental and Ecological Statistics, 2013, 20 : 1 - 17
  • [16] Analysis of Rainfall Severity and Duration in Victoria, Australia using Non-parametric Copulas and Marginal Distributions
    Ummul Fahri Abdul Rauf
    Panlop Zeephongsekul
    Water Resources Management, 2014, 28 : 4835 - 4856
  • [17] Analysis of Rainfall Severity and Duration in Victoria, Australia using Non-parametric Copulas and Marginal Distributions
    Rauf, Ummul Fahri Abdul
    Zeephongsekul, Panlop
    WATER RESOURCES MANAGEMENT, 2014, 28 (13) : 4835 - 4856
  • [18] Measures of preferred direction for environmental and ecological circular data
    Otieno, B. Sango
    Anderson-Cook, Christine M.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2006, 13 (03) : 311 - 324
  • [19] Measures of preferred direction for environmental and ecological circular data
    B. Sango Otieno
    Christine M. Anderson-Cook
    Environmental and Ecological Statistics, 2006, 13 : 311 - 324
  • [20] Testing goodness of fit for parametric families of copulas - Application to financial data
    Dobric, J
    Schmid, F
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2005, 34 (04) : 1053 - 1068