Non-parametric copulas for circular–linear and circular–circular data: an application to wind directions

被引:0
|
作者
Jose A. Carnicero
M. Concepción Ausín
Michael P. Wiper
机构
[1] Hospital Virgen del Valle,Sección de Geriatría
[2] Universidad Carlos III de Madrid,Departamento de Estadística
来源
Stochastic Environmental Research and Risk Assessment | 2013年 / 27卷
关键词
Bernstein polynomials; Circular distributions; Circular–circular data; Circular–linear data; Copulas; Non-parametric estimation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a nonparametric approach to estimating the dependence relationships between circular variables and other circular or linear variables using copulas. The proposed method is based on the use of Bernstein copulas which are a very flexible class of non-parametric copulas which allows for the approximation of any kind of dependence structure, including non symmetric relationships. In particular, we present a simple procedure to adapt Bernstein copulas to the circular framework and guarantee that the constructed bivariate distributions are strictly continuous. We provide two illustrative case studies, the first on the relation between wind direction and quantity of rainfall in the North of Spain and the second on the dependence between the wind directions in two nearby buoys at the Atlantic ocean.
引用
收藏
页码:1991 / 2002
页数:11
相关论文
共 43 条
  • [1] Non-parametric copulas for circular-linear and circular-circular data: an application to wind directions
    Carnicero, Jose A.
    Concepcion Ausin, M.
    Wiper, Michael P.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (08) : 1991 - 2002
  • [2] Models for circular-linear and circular-circular data constructed from circular distributions based on nonnegative trigonometric sums
    Fernandez-Duran, J. J.
    BIOMETRICS, 2007, 63 (02) : 579 - 585
  • [3] On a class of circulas: copulas for circular distributions
    Jones, M. C.
    Pewsey, Arthur
    Kato, Shogo
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (05) : 843 - 862
  • [4] On a class of circulas: copulas for circular distributions
    M. C. Jones
    Arthur Pewsey
    Shogo Kato
    Annals of the Institute of Statistical Mathematics, 2015, 67 : 843 - 862
  • [5] On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators
    Di Bernardino, Elena
    Rulliere, Didier
    DEPENDENCE MODELING, 2013, 1 (01): : 1 - 36
  • [6] Exploring wind direction and SO2 concentration by circular–linear density estimation
    E. García-Portugués
    R. M. Crujeiras
    W. González-Manteiga
    Stochastic Environmental Research and Risk Assessment, 2013, 27 : 1055 - 1067
  • [7] CircSiZer: an exploratory tool for circular data
    Oliveira, Maria
    Crujeiras, Rosa M.
    Rodriguez-Casal, Alberto
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (01) : 143 - 159
  • [8] CircSiZer: an exploratory tool for circular data
    María Oliveira
    Rosa M. Crujeiras
    Alberto Rodríguez-Casal
    Environmental and Ecological Statistics, 2014, 21 : 143 - 159
  • [9] Non-parametric estimation in contaminated linear model
    Chai G.
    Sun Y.
    Yang X.
    Applied Mathematics-A Journal of Chinese Universities, 2001, 16 (2) : 195 - 202
  • [10] NON-PARAMETRIC ESTIMATION IN CONTAMINATED LINEAR MODEL
    Chai Genxiang Sun Yan Yang XiaohanDept.ofAppl.Math.
    AppliedMathematics:AJournalofChineseUniversities, 2001, (02) : 195 - 202