Stability of difference schemes for fractional equations

被引:0
|
作者
Ru Liu
Miao Li
S. I. Piskarev
机构
[1] Sichuan University,Department of Mathematics
[2] Lomonosov Moscow State University,undefined
来源
Differential Equations | 2015年 / 51卷
关键词
Banach Space; Cauchy Problem; Difference Scheme; Fractional Derivative; Explicit Scheme;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the approximation to solutions of equations with fractional time derivatives. We use the notions of a general approximation scheme including the finite difference method, the finite element method, and projection methods.
引用
收藏
页码:904 / 924
页数:20
相关论文
共 50 条
  • [41] Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations
    Dimitrov, Nikolay D.
    Jonnalagadda, Jagan Mohan
    FRACTAL AND FRACTIONAL, 2024, 8 (10)
  • [42] Stability of equilibrium points of fractional difference equations with stochastic perturbations
    Paternoster, Beatrice
    Shaikhet, Leonid
    ADVANCES IN DIFFERENCE EQUATIONS, 2008, 2008 (1)
  • [43] On implicit fractional q-difference equations: Analysis and stability
    Laledj, Nadjet
    Salim, Abdelkrim
    Lazreg, Jamal Eddine
    Abbas, Said
    Ahmad, Bashir
    Benchohra, Mouffak
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 10775 - 10797
  • [44] Stability and Robustness of Singular Systems of Fractional Nabla Difference Equations
    Ioannis K. Dassios
    Circuits, Systems, and Signal Processing, 2017, 36 : 49 - 64
  • [45] Ulam-Hyers stability of Caputo fractional difference equations
    Chen, Churong
    Bohner, Martin
    Jia, Baoguo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7461 - 7470
  • [46] Stability and Robustness of Singular Systems of Fractional Nabla Difference Equations
    Dassios, Ioannis K.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (01) : 49 - 64
  • [47] Hyers-Ulam Stability of Fractional Nabla Difference Equations
    Jonnalagadda, Jagan Mohan
    INTERNATIONAL JOURNAL OF ANALYSIS, 2016,
  • [48] ASYMPTOTIC STABILITY OF FRACTIONAL DIFFERENCE EQUATIONS WITH BOUNDED TIME DELAYS
    Wang, Mei
    Jia, Baoguo
    Du, Feifei
    Liu, Xiang
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (02) : 571 - 590
  • [49] Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations
    Han Zhou
    WenYi Tian
    Weihua Deng
    Journal of Scientific Computing, 2013, 56 : 45 - 66
  • [50] Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations
    Owolabi, Kolade M.
    Atangana, Abdon
    CHAOS SOLITONS & FRACTALS, 2018, 111 : 119 - 127