Quasilinear elliptic systems with nonstandard growth and weak monotonicity

被引:0
作者
Elhoussine Azroul
Farah Balaadich
机构
[1] University Sidi Mohamed Ben Abdellah,Department of Mathematics, Faculty of Sciences Dhar El Mehraz
来源
Ricerche di Matematica | 2020年 / 69卷
关键词
Orlicz–Sobolev spaces; Quasilinear elliptic systems; Weak solution; Young measures; 35J57; 35D30; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of solutions for a quasilinear elliptic system -divσ(x,u,Du)=f(x,u,Du)inΩ,u=0on∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\text {div}\,\sigma (x,u,Du)&{}=f(x,u,Du)\quad \text {in}\;\varOmega ,\\ u&{}=0\quad \text {on}\;\partial \varOmega . \end{array} \right. \end{aligned}$$\end{document}The results are obtained in Orlicz–Sobolev spaces by means of the Young measures.
引用
收藏
页码:35 / 51
页数:16
相关论文
共 31 条
[1]  
Ait Hammou M(2018)Existence of solutions for p(x)-Laplacien Dirichlet problem by topological degree Bull. Transilv. Univ. Brasov 11 19-28
[2]  
Azroul E(2004)On the solvability of degenerated quasilinear elliptic problems Electron. J. Differ. Equ. Conf. 11 11-22
[3]  
Lahmi B(2011)Quasilinear elliptic problems with nonstandard growth Electron. J. Differ. Equ. 2011 1-16
[4]  
Akdim Y(1968)Nonlinear functional equations in Banach spaces and elliptic super-regularization Mathematische Zeitschrift 105 177-195
[5]  
Azroul E(1971)Nonlinear elliptic boundary value problems in Orlicz–Sobolev spaces J. Differ. Equ. 10 507-528
[6]  
Rhoudaf M(2008)An existence theorem for weak solutions for a class of elliptic partial differential systems in general Orlicz–Sobolev spaces Nonlinear Anal. 69 2049-2057
[7]  
Benboubker MB(2014)Existence results for nonlinear elliptic equations with Leray–Lions operator and dependence on the gradient Nonlinear Anal. 96 154-166
[8]  
Azroul E(1987)Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions Analysis 7 83-93
[9]  
Barbara A(1997)A refinement of Ball’s theorem on Young measures N. Y. J. Math. 3 48-53
[10]  
Browder F(1974)Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients Trans. Am. Math. Soc. 190 163-205