The Essential Spectrum of Toeplitz Operators on the Unit Ball

被引:0
作者
Raffael Hagger
机构
[1] Leibniz University Hannover,Institute of Analysis
来源
Integral Equations and Operator Theory | 2017年 / 89卷
关键词
Toeplitz operators; Bergman space; Essential spectrum; Limit operators; Primary 47B35; Secondary 32A36; 47A53; 47A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the Fredholm properties of Toeplitz operators acting on weighted Bergman spaces Aνp(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^p_{\nu }(\mathbb {B}^n)$$\end{document}, where p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,\infty )$$\end{document} and Bn⊂Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}^n \subset \mathbb {C}^n$$\end{document} denotes the n-dimensional open unit ball. Let f be a continuous function on the Euclidean closure of Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}^n$$\end{document}. It is well-known that then the corresponding Toeplitz operator Tf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_f$$\end{document} is Fredholm if and only if f has no zeros on the boundary ∂Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \mathbb {B}^n$$\end{document}. As a consequence, the essential spectrum of Tf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_f$$\end{document} is given by the boundary values of f. We extend this result to all operators in the algebra generated by Toeplitz operators with bounded symbol (in a sense to be made precise down below). The main ideas are based on the work of Suárez et al. (Integral Equ Oper Theory 75:197–233, 2013, Indiana Univ Math J 56(5):2185–2232, 2007) and limit operator techniques coming from similar problems on the sequence space ℓp(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p(\mathbb {Z})$$\end{document} (Hagger et al. in J Math Anal Appl 437(1):255–291, 2016; Lindner and Seidel in J Funct Anal 267(3):901–917, 2014; Rabinovich et al. Integral Equ Oper Theory 30(4): 452–495, 1998 and references therein).
引用
收藏
页码:519 / 556
页数:37
相关论文
共 46 条
[1]  
Axler S(1982)Toeplitz operators on Bergman spaces Can. J. Math. 34 466-483
[2]  
Conway J(2015)Toeplitz operators with uniformly continuous symbols Integral Equ. Oper. Theory 83 25-34
[3]  
McDonald G(1990)BMO in the Bergman metric on bounded symmetric domains J. Funct. Anal. 93 310-350
[4]  
Bauer W(1995)Reproducing kernels and Stud. Math. 115 219-239
[5]  
Coburn L(1987)-Estimates for Bergman projections in siegel domains of type II T. Am. Math. Soc. 301 813-829
[6]  
Békollé D(1997)Toeplitz operators on the Segal–Bargmann space Math. Jpn. 45 57-60
[7]  
Berger C(1973)The essential spectra of toeplitz operators with symbols in Indiana Univ. Math. J. 23 433-439
[8]  
Coburn L(1999)Singular integral operators and Toeplitz operators on odd spheres Integral Equ. Oper. Theory 33 426-455
[9]  
Zhu K(1999)Compact Toeplitz operators via the berezin transform on bounded symmetric domains Proc. Am. Math. Soc. 127 3259-3268
[10]  
Békollé D(1990)A mean value theorem on bounded symmetric domains J. Funct. Anal. 88 64-89