Multi-class Classification of Motor Imagery EEG Signals Using Deep Learning Models

被引:0
作者
Khemakhem R. [1 ,2 ]
Belgacem S. [1 ]
Echtioui A. [1 ]
Ghorbel M. [1 ]
Ben Hamida A. [3 ]
Kammoun I. [4 ]
机构
[1] Advanced Technologies for Medicine and Signals Laboratory ‘ATMS’, National Engineering School of Sfax (ENIS), Sfax University, Sfax
[2] Higher Institute of Management of Gabès, Gabès University, Gabès
[3] Department IS, College of Computer Science, King Khaled University ‘KKU’, Abha
[4] Functional Exploration Department of Habib Bourguiba Hospital, Sfax University, Sfax
关键词
BCI; BiLSTM; CNN; EEG; Motor imagery; RNN;
D O I
10.1007/s42979-024-02845-x
中图分类号
学科分类号
摘要
The accurate classification of Motor Imagery (MI) electroencephalography (EEG) signals is crucial for advancing Brain-Computer Interface (BCI) technologies, particularly for individuals with disabilities. In this study, we present a sophisticated deep learning methodology that systematically evaluates three models CNN, RNN, and BiLSTM, to identify the optimal approach for MI signal classification. Leveraging the BCI Competition IV 2a dataset, we applied a pre-processing step removing three EOG channels and retaining 22 EEG channels, extracting 288 MI epochs, each lasting 3 s. Our findings highlight the superior performance of the proposed RNN model, achieving a remarkable maximum accuracy of 98%. This outcome signifies a significant advancement in MI signal classification, demonstrating the potential of deep learning techniques to enhance BCI precision. The study contributes by introducing a novel methodology and showcasing its efficacy through rigorous evaluation against benchmarks, providing valuable insights for the development of more robust and accurate BCI systems. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024.
引用
收藏
相关论文
共 23 条
[1]  
Bekaert M., Botte-Lecocq C., Cabestaing F., Rakotomamonjy A., Les interfaces Cerveau-Machine pour la palliation du handicap moteur sévère, Sci et Technol pour le Handicap, Lavoisier, 3, 1, pp. 95-121, (2009)
[2]  
Rivet B., Souloumiac A., Extraction de potentiels évoqués P300 pour les interfaces cerveau-machine., (2007)
[3]  
Wang L., Huang W., Yang Z., Zhang C., Temporal-spatial-frequency depth extraction of brain computer interface based on mental tasks, Biomed Signal Process Control, 58, (2020)
[4]  
Fadel W., Kollod C., Wahdow M., Ibrahim Y., Ulbert I., Multi-Class Classification of Motor Imagery EEG Signals Using Image-Based Deep Recurrent Convolutional Neural Network, Conference Paper, (2020)
[5]  
Nicolas-Alonso L.F., Gomez-Gil J., Brain computer interfaces, a review, Sensors, 12, pp. 1211-1279, (2012)
[6]  
Uyulan C., Development of LSTM & CNN based hybrid deep learning model to classify motor imagery tasks, (2020)
[7]  
Akrout A., Echtioui A., Khemakhem R., Ghorbel M., Artificial and Convolutional Neural Network of EEG-Based Motor imagery classification: A Comparative Study, 2020 20Th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 46-50, (2020)
[8]  
Wang Z., Cao L., Zhang Z., Gong X., Sun Y., Wang H., Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition, Concurr Comput Pract Exp, 30, (2018)
[9]  
Libessart E., Interface cerveau-machine: De nouvelles perspectives grâce à l’accélération matérielle. Electronique. Ecole nationale supérieure Mines-Télécom Atlantique, (2018)
[10]  
Bioulac B., Jarry B., Ardaillouardaillou R., Interfaces cerveau-machine: Essais d‘applications médicales, technologie et questions éthiques.