The Sixth Power Moment of Dirichlet L-Functions

被引:0
作者
J. B. Conrey
H. Iwaniec
K. Soundararajan
机构
[1] American Institute of Mathematics,Department of Mathematics
[2] Bristol University,Department of Mathematics
[3] Rutgers University,Department of Mathematics
[4] Stanford University,undefined
来源
Geometric and Functional Analysis | 2012年 / 22卷
关键词
Asymptotic Formula; Main Term; Random Matrix Theory; Lead Order Term; Primitive Character;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a formula, with power savings, for the sixth moment of Dirichlet L- functions averaged over all primitive characters χ (mod q) with q ≤ Q, and over the critical line. Our formula agrees precisely with predictions motivated by random matrix theory. In particular, the constant 42 appears as a factor in the leading order term, exactly as is predicted for the sixth moment of the Riemann zeta-function.
引用
收藏
页码:1257 / 1288
页数:31
相关论文
共 50 条
  • [41] The first power mean of the inversion of L-functions weighted by quadratic Gauss sums
    Zhang, WP
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (02) : 283 - 292
  • [42] Moments of products of automorphic L-functions
    Milinovich, Micah B.
    Turnage-Butterbaugh, Caroline L.
    JOURNAL OF NUMBER THEORY, 2014, 139 : 175 - 204
  • [43] The First Power Mean of the Inversion of L-Functions Weighted by Quadratic Gauss Sums
    Wen Peng ZHANG Research Center for Basic Science
    ActaMathematicaSinica(EnglishSeries), 2004, 20 (02) : 283 - 292
  • [44] Statistics for low-lying zeros of symmetric power L-functions in the level aspect
    Ricotta, Guillaume
    Royer, Emmanuel
    FORUM MATHEMATICUM, 2011, 23 (05) : 969 - 1028
  • [45] Low-lying Zeros of Quadratic Dirichlet L-Functions, Hyper-elliptic Curves and Random Matrix Theory
    Entin, Alexei
    Roditty-Gershon, Edva
    Rudnick, Zeev
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (04) : 1230 - 1261
  • [46] Low-lying Zeros of Quadratic Dirichlet L-Functions, Hyper-elliptic Curves and Random Matrix Theory
    Alexei Entin
    Edva Roditty-Gershon
    Zeév Rudnick
    Geometric and Functional Analysis, 2013, 23 : 1230 - 1261
  • [47] On the vanishing of twisted L-functions of elliptic curves
    David, C
    Fearnley, J
    Kisilevsky, H
    EXPERIMENTAL MATHEMATICS, 2004, 13 (02) : 185 - 198
  • [48] Moments of Artin-Schreier L-functions
    Florea, Alexandra
    Jones, Edna
    Lalin, Matilde
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (04) : 1255 - 1284
  • [49] Vanishing of quartic and sextic twists of L-functions
    Jennifer Berg
    Nathan C. Ryan
    Matthew P. Young
    Research in Number Theory, 2024, 10
  • [50] Vanishing of quartic and sextic twists of L-functions
    Berg, Jennifer
    Ryan, Nathan C.
    Young, Matthew P.
    RESEARCH IN NUMBER THEORY, 2024, 10 (01)