Random Evolution Equations: Well-Posedness, Asymptotics, and Applications to Graphs

被引:0
|
作者
Stefano Bonaccorsi
Francesca Cottini
Delio Mugnolo
机构
[1] Università di Trento,Dipartimento di Matematica
[2] Università di Milano Bicocca,Dipartimento di Matematica e Applicazioni
[3] FernUniversität in Hagen,Lehrgebiet Analysis, Fakultät Mathematik und Informatik
来源
关键词
Operator semigroups; Evolution equations in random environments; Discrete Laplacians; Quantum graphs; Primary 35R60; Secondary 47D06; 37A50; 60K15;
D O I
暂无
中图分类号
学科分类号
摘要
We study diffusion-type equations supported on structures that are randomly varying in time. After settling the issue of well-posedness, we focus on the asymptotic behavior of solutions: our main result gives sufficient conditions for pathwise convergence in norm of the (random) propagator towards a (deterministic) steady state. We apply our findings in two environments with randomly evolving features: ensembles of difference operators on combinatorial graphs, or else of differential operators on metric graphs.
引用
收藏
页码:2849 / 2887
页数:38
相关论文
共 50 条