Norm Estimates of the Partial Transpose Map on the Tensor Products of Matrices

被引:0
作者
Tsuyoshi Ando
Takashi Sano
机构
[1] Shiroishi-ku,Department of Mathematical Sciences, Faculty of Science
[2] Yamagata University,undefined
来源
Positivity | 2008年 / 12卷
关键词
Primary 47A80, 47A30; Secondary 15A42; Partial transpose map; norm estimate; tensor product; unitarily invariant norm; positivity; numerical radius;
D O I
暂无
中图分类号
学科分类号
摘要
We present a norm estimate for the partial transpose map Θ on the tensor product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_m \otimes M_n$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta \left( \sum_k A_k \otimes B_k \right) := \sum_k A_k \otimes B_k^T$$\end{document}with respect to a unitarily invariant norm. This is related to the norm estimates of the following maps on Mm,n in terms of the spectral norm of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \sum_k A_k \otimes B_k$$\end{document} : \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \longmapsto \sum_k A_k X B_k \quad \textrm{and} \quad X \longmapsto \sum_k A_k X B_k^T.$$\end{document}We show further that in the special case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \otimes I_n + I_m \otimes B$$\end{document} as well as AX + XB and AX + XBT those estimates are much improved and that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\| A \otimes I_n + I_m \otimes B^T \|_p = \| A \otimes I_n + I_m \otimes B \|_p$$\end{document}for certain Schatten p-norms.
引用
收藏
页码:9 / 24
页数:15
相关论文
共 3 条
  • [1] Ando T.(1996)Bounds for anti-distance J. Convex Anal. 3 371-373
  • [2] Choi M.D.(2006)The ultimate estimate of the upper norm bound for the summation of operators J. Funct. Anal. 232 455-476
  • [3] Li C.K.(undefined)undefined undefined undefined undefined-undefined