Collapsing sequences of solutions to the Ricci flow on 3-manifolds with almost nonnegative curvature

被引:0
作者
Bennett Chow
David Glickenstein
Peng Lu
机构
[1] University of California,Department of Mathematics
[2] San Diego,Department of Mathematics
[3] University of Arizona,Department of Mathematics
[4] University of Oregon,undefined
来源
Mathematische Zeitschrift | 2006年 / 254卷
关键词
Primary: 53C44; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We study sequences of 3-dimensional solutions to the Ricci flow with almost nonnegative sectional curvatures and diameters tending to infinity. Such sequences may arise from the limits of dilations about singularities of Type IIb. In particular, we study the case when the sequence collapses, which may occur when dilating about infinite time singularities. In this case we classify the possible Gromov-Hausdorff limits and construct 2-dimensional virtual limits. The virtual limits are constructed using Fukaya theory of the limits of local covers. We then show that the virtual limit arising from appropriate dilations of a Type IIb singularity is always Hamilton's cigar soliton solution.
引用
收藏
页码:1 / 28
页数:27
相关论文
共 20 条
[1]  
Carfora undefined(1988)undefined Classical Quantum Gravity 5 659-undefined
[2]  
Cheeger undefined(1972)undefined J. Diff. Geom. 8 623-undefined
[3]  
Cheeger undefined(1986)undefined J. Diff. Geom. 23 309-undefined
[4]  
Cheeger undefined(1990)undefined J. Diff. Geom. 32 269-undefined
[5]  
Cheeger undefined(1982)undefined J. Diff. Geom. 17 15-undefined
[6]  
Cheng undefined(5)undefined Amer. J. Math. 103 1021-undefined
[7]  
Chow undefined(2003)undefined Math. Res. Lett. 10 737-undefined
[8]  
Chow undefined(5)undefined Comm. Anal. Geom. 10 1151-undefined
[9]  
Fukaya undefined(1988)undefined J. Diff. Geom. 28 1-undefined
[10]  
Glickenstein undefined(2003)undefined Geom. Topol. 7 487-undefined