Automated parameter tuning based on RMS errors for nonequispaced FFTs

被引:0
作者
Franziska Nestler
机构
[1] Technische Universität Chemnitz,Faculty of Mathematics
来源
Advances in Computational Mathematics | 2016年 / 42卷
关键词
Nonequispaced fast Fourier transform; Nonuniform fast Fourier transform; NFFT; NUFFT; 65T;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the error behavior of the well known fast Fourier transform for nonequispaced data (NFFT) with respect to the ℒ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {L}_{2}$\end{document}-norm. We compare the arising errors for different window functions and show that the accuracy of the algorithm can be significantly improved by modifying the shape of the window function. Based on the considered error estimates for different window functions we are able to state an easy and efficient method to tune the involved parameters automatically. The numerical examples show that the optimal parameters depend on the given Fourier coefficients, which are assumed not to be of a random structure or roughly of the same magnitude but rather subject to a certain decrease.
引用
收藏
页码:889 / 919
页数:30
相关论文
共 35 条
[1]  
Beylkin G(1995)On the fast Fourier transform of functions with singularities Appl. Comput. Harmon. Anal. 2 363-381
[2]  
Deserno M(1998)How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines J. Chem. Phys. 109 7678-7693
[3]  
Holm C(1999)Nonuniform fast Fourier transform Geophysics 64 539-551
[4]  
Duijndam AJW(1993)Fast Fourier transforms for nonequispaced data SIAM J. Sci. Stat. Comput. 14 1368-1393
[5]  
Schonewille MA(1921)Die Berechnung optischer und elektrostatischer Gitterpotentiale Ann. Phys. 369 253-287
[6]  
Dutt A(2003)Nonuniform fast Fourier transforms using min-max interpolation IEEE Trans. Signal Process. 51 560-574
[7]  
Rokhlin V(2003)Non equispaced fast Fourier transforms with applications to tomography J. Fourier Anal. Appl. 9 431-450
[8]  
Ewald PP(2004)Accelerating the nonuniform fast Fourier transform SIAM Rev. 46 443-454
[9]  
Fessler JA(1991)Selection of a convolution function for Fourier inversion using gridding IEEE Trans. Med. Imag. 10 473-478
[10]  
Sutton BP(2009)Optimized least-square nonuniform fast Fourier transform IEEE Trans. Signal Process. 57 2165-2177