Algebraic K-theory of Gorenstein projective modules

被引:0
作者
Ruixin Li
Miantao Liu
Nan Gao
机构
[1] Shanghai University,Department of Mathematics
来源
Frontiers of Mathematics in China | 2018年 / 13卷
关键词
Frobenius pair; Gorenstein projective module; Gorenstein algebraic ; -group; idempotent complete category; recollement; 16E10; 19D50; 18F25; 16E20;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the Gorenstein algebraic K-theory space and the Gorenstein algebraic K-group of a ring, and show the relation with the classical algebraic K-theory space, and also show the ‘resolution theorem’ in this context due to Quillen. We characterize the Gorenstein algebraic K-groups by two different algebraic K-groups and by the idempotent completeness of the Gorenstein singularity category of the ring. We compute the Gorenstein algebraic K-groups along a recollement of the bounded Gorenstein derived categories of CM-nite Gorenstein algebras.
引用
收藏
页码:55 / 66
页数:11
相关论文
共 16 条
[1]  
Balmer P(2001)Idempotent completion of triangulated categories J Algebra 236 819-834
[2]  
Schlichting M(2015)Gorenstein singularity categories J Algebra 428 122-137
[3]  
Bao Y H(2011)On algebras of nite Cohen-Macaulay type Adv Math 226 1973-2019
[4]  
Du X N(2016)Higher algebraic K-theory of ring epimorphisms Algebr Represent Theory 19 1347-1367
[5]  
Zhao Z B(2010)Gorenstein derived categories J Algebra 323 2041-2057
[6]  
Beligiannis A(2017)Ladders and simplicity of derived module categories J Algebra 472 15-66
[7]  
Chen H X(1990)Chain complexes and stable categories Manuscripta Math 67 379-417
[8]  
Xi C C(2006)Negative K-theory of derived categories Math Z 253 97-134
[9]  
Gao N(undefined)undefined undefined undefined undefined-undefined
[10]  
Zhang P(undefined)undefined undefined undefined undefined-undefined