Some Characterizations of Linear Weingarten Surfaces in 3-Dimensional Space Forms

被引:0
|
作者
Yan Ru Luo
Dan Yang
Xiao Ying Zhu
机构
[1] Liaoning University,School of Mathematics
来源
Results in Mathematics | 2022年 / 77卷
关键词
Surfaces of revolution; biconservative surfaces; linear weingarten surfaces; 53B25; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of surfaces satisfying an interesting geometric equation A∇H=kH∇H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \nabla H=kH\nabla H$$\end{document} in non-flat 3-dimensional space forms N3(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{3}(c)$$\end{document}, where A is the shape operator, H is the mean curvature and k is a constant. This kind of surfaces are called generalized biconservative surfaces (or GB surfaces for short). We prove that every GB surface in 3-dimensional space forms is linear Weingarten, and we classify all GB surfaces in 3-dimensional sphere S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^{3}$$\end{document} and hyperbolic space H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{3}$$\end{document}, respectively. Moreover, for a curvature energy in Riemannian 3-space forms, we show that the profile curves of rotational GB surfaces can be characterized as the critical curves.
引用
收藏
相关论文
共 50 条
  • [21] LINEAR WEINGARTEN HYPERSURFACES IN RIEMANNIAN SPACE FORMS
    Chao, Xiaoli
    Wang, Peijun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 567 - 577
  • [22] DISCRETE FLAT SURFACES AND LINEAR WEINGARTEN SURFACES IN HYPERBOLIC 3-SPACE
    Hoffmann, T.
    Rossman, W.
    Sasaki, T.
    Yoshida, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (11) : 5605 - 5644
  • [23] TIMELIKE TUBULAR SURFACES OF WEINGARTEN TYPES AND LINEAR WEINGARTEN TYPES IN MINKOWSKI 3-SPACE
    He, Chenghong
    Sun, He-jun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (02) : 401 - 419
  • [24] Linear Weingarten Helicoidal Surfaces in Isotropic Space
    Yoon, Dae Won
    Lee, Jae Won
    SYMMETRY-BASEL, 2016, 8 (11):
  • [25] NEW CHARACTERIZATIONS OF LINEAR WEINGARTEN HYPERSURFACES IMMERSED IN THE HYPERBOLIC SPACE
    Aquino, Cicero P.
    de Lima, Henrique F.
    ARCHIVUM MATHEMATICUM, 2015, 51 (04): : 201 - 209
  • [26] Critical curves for the total normal curvature in surfaces of 3-dimensional space forms
    Barros, Manuel
    Garay, Oscar J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 275 - 292
  • [27] Hyperbolic linear Weingarten surfaces in ℝ3
    Aledo Sánchez J.A.
    Espinar J.M.
    Bulletin of the Brazilian Mathematical Society, New Series, 2007, 38 (2) : 291 - 300
  • [28] MOTION OF SURFACES IN 3-DIMENSIONAL SPACE
    NAKAYAMA, K
    WADATI, M
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1994, 37 (4-5) : 417 - 430
  • [29] Some characterizations of rectifying curves in the 3-dimensional hyperbolic space H3(-r)
    Pal, Buddhadev
    Yadav, Akhilesh
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (01): : 235 - 242
  • [30] LINEAR WEINGARTEN SURFACES FOLIATED BY CIRCLES IN MINKOWSKI SPACE
    Kalkan, Ozgur Boyacioglu
    Lopez, Rafael
    Saglam, Derya
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (05): : 1897 - 1917