Three-Color Ramsey Number of an Odd Cycle Versus Bipartite Graphs with Small Bandwidth

被引:0
作者
Chunlin You
Qizhong Lin
机构
[1] Fuzhou University,Center for Discrete Mathematics
[2] Yancheng Teachers University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Ramsey number; Small bandwidth; Cycle; Regularity Lemma; 05C55; 05D10;
D O I
暂无
中图分类号
学科分类号
摘要
A graph H=(W,EH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}=(W,E_\mathcal {H})$$\end{document} is said to have bandwidth at most b if there exists a labeling of W as w1,w2,⋯,wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_1,w_2,\dots ,w_n$$\end{document} such that |i-j|≤b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|i-j|\le b$$\end{document} for every edge wiwj∈EH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_iw_j\in E_\mathcal {H}$$\end{document}. We say that H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} is a balanced (β,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta ,\Delta )$$\end{document}-graph if it is a bipartite graph with bandwidth at most β|W|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta |W|$$\end{document} and maximum degree at most Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, and it also has a proper 2-coloring χ:W→[2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi :W\rightarrow [2]$$\end{document} such that ||χ-1(1)|-|χ-1(2)||≤β|χ-1(2)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\chi ^{-1}(1)|-|\chi ^{-1}(2)||\le \beta |\chi ^{-1}(2)|$$\end{document}. In this paper, we prove that for every γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >0$$\end{document} and every natural number Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, there exists a constant β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >0$$\end{document} such that for every balanced (β,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta ,\Delta )$$\end{document}-graph H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} on n vertices we have R(H,H,Cn)≤(3+γ)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}R(\mathcal {H}, \mathcal {H}, C_n) \le (3+\gamma )n\end{aligned}$$\end{document}for all sufficiently large odd n. The upper bound is sharp for several classes of graphs. Let θn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{n,t}$$\end{document} be the graph consisting of t internally disjoint paths of length n all sharing the same endpoints. As a corollary, for each fixed t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 1$$\end{document}, R(θn,t,θn,t,Cnt+λ)=(3t+o(1))n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(\theta _{n, t},\theta _{n, t}, C_{nt+\lambda })=(3t+o(1))n,$$\end{document} where λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =0$$\end{document} if nt is odd and λ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1$$\end{document} if nt is even. In particular, we have R(C2n,C2n,C2n+1)=(6+o(1))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(C_{2n},C_{2n}, C_{2n+1})=(6+o(1))n$$\end{document}, which is a special case of a result of Figaj and Łuczak (2018).
引用
收藏
相关论文
共 46 条
[41]   Restricted size Ramsey number for P3 versus cycle [J].
Cyman, Joanna ;
Dzido, Tomasz .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2020, 8 (02) :365-372
[42]   On three-color Ramsey numbers R(C4, K1,m, Pn) [J].
Zhang, Fangfang ;
Zhang, Yunqing ;
Chen, Yaojun .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 :97-108
[43]   The Ramsey Number for a Linear Forest versus Two Identical Copies of Complete Graphs [J].
Sudarsana, I. W. ;
Adiwijaya ;
Musdalifah, S. .
COMPUTING AND COMBINATORICS, 2010, 6196 :209-+
[44]   THE RAMSEY NUMBER FOR A LINEAR FOREST VERSUS TWO IDENTICAL COPIES OF COMPLETE GRAPHS [J].
Sudarsana, I. Wayan ;
Assiyatun, Hilda ;
Adiwijaya ;
Musdalifah, Selvy .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2010, 2 (04) :437-444
[45]   THE RAMSEY NUMBER FOR THETA GRAPH VERSUS A CLIQUE OF ORDER THREE AND FOUR [J].
Bataineh, M. S. A. ;
Jaradat, M. M. M. ;
Bateeha, M. S. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (02) :223-232
[46]   Generalized Ramsey Numbers for Graphs with Three Disjoint Cycles Versus a Complete Graph [J].
Fujita, Shinya .
ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02)