Three-Color Ramsey Number of an Odd Cycle Versus Bipartite Graphs with Small Bandwidth

被引:0
作者
Chunlin You
Qizhong Lin
机构
[1] Fuzhou University,Center for Discrete Mathematics
[2] Yancheng Teachers University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Ramsey number; Small bandwidth; Cycle; Regularity Lemma; 05C55; 05D10;
D O I
暂无
中图分类号
学科分类号
摘要
A graph H=(W,EH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}=(W,E_\mathcal {H})$$\end{document} is said to have bandwidth at most b if there exists a labeling of W as w1,w2,⋯,wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_1,w_2,\dots ,w_n$$\end{document} such that |i-j|≤b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|i-j|\le b$$\end{document} for every edge wiwj∈EH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_iw_j\in E_\mathcal {H}$$\end{document}. We say that H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} is a balanced (β,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta ,\Delta )$$\end{document}-graph if it is a bipartite graph with bandwidth at most β|W|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta |W|$$\end{document} and maximum degree at most Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, and it also has a proper 2-coloring χ:W→[2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi :W\rightarrow [2]$$\end{document} such that ||χ-1(1)|-|χ-1(2)||≤β|χ-1(2)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\chi ^{-1}(1)|-|\chi ^{-1}(2)||\le \beta |\chi ^{-1}(2)|$$\end{document}. In this paper, we prove that for every γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >0$$\end{document} and every natural number Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, there exists a constant β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >0$$\end{document} such that for every balanced (β,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta ,\Delta )$$\end{document}-graph H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} on n vertices we have R(H,H,Cn)≤(3+γ)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}R(\mathcal {H}, \mathcal {H}, C_n) \le (3+\gamma )n\end{aligned}$$\end{document}for all sufficiently large odd n. The upper bound is sharp for several classes of graphs. Let θn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{n,t}$$\end{document} be the graph consisting of t internally disjoint paths of length n all sharing the same endpoints. As a corollary, for each fixed t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 1$$\end{document}, R(θn,t,θn,t,Cnt+λ)=(3t+o(1))n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(\theta _{n, t},\theta _{n, t}, C_{nt+\lambda })=(3t+o(1))n,$$\end{document} where λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =0$$\end{document} if nt is odd and λ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1$$\end{document} if nt is even. In particular, we have R(C2n,C2n,C2n+1)=(6+o(1))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(C_{2n},C_{2n}, C_{2n+1})=(6+o(1))n$$\end{document}, which is a special case of a result of Figaj and Łuczak (2018).
引用
收藏
相关论文
共 46 条
[31]   An upper bound for the Ramsey number of a cycle of length four versus wheels [J].
Surahmat ;
Baskoro, ET ;
Uttunggadewa, S ;
Broersma, H .
COMBINATORIAL GEOMETRY AND GRAPH THEORY, 2005, 3330 :181-184
[32]   The Ramsey Number for a Forest Versus Disjoint Union of Complete Graphs [J].
Hu, Sinan ;
Peng, Yuejian .
GRAPHS AND COMBINATORICS, 2023, 39 (02)
[33]   The Ramsey Number for a Forest Versus Disjoint Union of Complete Graphs [J].
Sinan Hu ;
Yuejian Peng .
Graphs and Combinatorics, 2023, 39
[34]   Some multicolor bipartite Ramsey numbers involving cycles and a small number of colors [J].
Hattingh, Johannes H. ;
Joubert, Ernst J. .
DISCRETE MATHEMATICS, 2018, 341 (05) :1325-1330
[35]   Connected size Ramsey numbers of matchings versus a small path or cycle [J].
Wang, Sha ;
Song, Ruyu ;
Zhang, Yixin ;
Zhang, Yanbo .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2025, 13 (01) :163-170
[36]   On the Star-Critical Ramsey Number of a Forest Versus Complete Graphs [J].
Kamranian, Azam ;
Raeisi, Ghaffar .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (02) :499-505
[37]   On the Ramsey Number for Theta Graphs Versus the Complete Graph of Order Six [J].
Baniabedalruhman, A. ;
Jaradat, M. M. M. ;
Bataineh, M. S. ;
Jaradat, A. M. M. .
JOURNAL OF MATHEMATICS, 2024, 2024
[38]   On the Star-Critical Ramsey Number of a Forest Versus Complete Graphs [J].
Azam Kamranian ;
Ghaffar Raeisi .
Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46 :499-505
[39]   Some Multi-Color Ramsey Numbers on Stars versus Path, Cycle or Wheel [J].
Longqin Wang .
Graphs and Combinatorics, 2020, 36 :515-524
[40]   Some Multi-Color Ramsey Numbers on Stars versus Path, Cycle or Wheel [J].
Wang, Longqin .
GRAPHS AND COMBINATORICS, 2020, 36 (03) :515-524