Three-Color Ramsey Number of an Odd Cycle Versus Bipartite Graphs with Small Bandwidth

被引:0
作者
Chunlin You
Qizhong Lin
机构
[1] Fuzhou University,Center for Discrete Mathematics
[2] Yancheng Teachers University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Ramsey number; Small bandwidth; Cycle; Regularity Lemma; 05C55; 05D10;
D O I
暂无
中图分类号
学科分类号
摘要
A graph H=(W,EH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}=(W,E_\mathcal {H})$$\end{document} is said to have bandwidth at most b if there exists a labeling of W as w1,w2,⋯,wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_1,w_2,\dots ,w_n$$\end{document} such that |i-j|≤b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|i-j|\le b$$\end{document} for every edge wiwj∈EH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_iw_j\in E_\mathcal {H}$$\end{document}. We say that H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} is a balanced (β,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta ,\Delta )$$\end{document}-graph if it is a bipartite graph with bandwidth at most β|W|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta |W|$$\end{document} and maximum degree at most Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, and it also has a proper 2-coloring χ:W→[2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi :W\rightarrow [2]$$\end{document} such that ||χ-1(1)|-|χ-1(2)||≤β|χ-1(2)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\chi ^{-1}(1)|-|\chi ^{-1}(2)||\le \beta |\chi ^{-1}(2)|$$\end{document}. In this paper, we prove that for every γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >0$$\end{document} and every natural number Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, there exists a constant β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >0$$\end{document} such that for every balanced (β,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta ,\Delta )$$\end{document}-graph H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} on n vertices we have R(H,H,Cn)≤(3+γ)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}R(\mathcal {H}, \mathcal {H}, C_n) \le (3+\gamma )n\end{aligned}$$\end{document}for all sufficiently large odd n. The upper bound is sharp for several classes of graphs. Let θn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{n,t}$$\end{document} be the graph consisting of t internally disjoint paths of length n all sharing the same endpoints. As a corollary, for each fixed t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 1$$\end{document}, R(θn,t,θn,t,Cnt+λ)=(3t+o(1))n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(\theta _{n, t},\theta _{n, t}, C_{nt+\lambda })=(3t+o(1))n,$$\end{document} where λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =0$$\end{document} if nt is odd and λ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1$$\end{document} if nt is even. In particular, we have R(C2n,C2n,C2n+1)=(6+o(1))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(C_{2n},C_{2n}, C_{2n+1})=(6+o(1))n$$\end{document}, which is a special case of a result of Figaj and Łuczak (2018).
引用
收藏
相关论文
共 46 条
[21]   Bipartite Ramsey number pairs that involve combinations of cycles and odd paths [J].
Joubert, Ernst J. .
DISCRETE MATHEMATICS, 2025, 348 (02)
[22]   Turan numbers of bipartite graphs plus an odd cycle [J].
Allen, Peter ;
Keevash, Peter ;
Sudakov, Benny ;
Verstraete, Jacques .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 106 :134-162
[23]   Three-Color Ramsey Numbers of K n Dropping an Edge [J].
He, Changxiang ;
Li, Yusheng ;
Dong, Lin .
GRAPHS AND COMBINATORICS, 2012, 28 (05) :663-669
[24]   The Ramsey Number for Tree Versus Wheel with Odd Order [J].
Yusuf Hafidh ;
Edy Tri Baskoro .
Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 :2151-2160
[25]   The Ramsey Number for Tree Versus Wheel with Odd Order [J].
Hafidh, Yusuf ;
Baskoro, Edy Tri .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) :2151-2160
[26]   The Ramsey number of a long even cycle versus a star [J].
Allen, Peter ;
Luczak, Tomasz ;
Polcyn, Joanna ;
Zhang, Yanbo .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 162 :144-153
[27]   The independence number of graphs with a forbidden cycle and Ramsey numbers [J].
Li, YS ;
Zang, WA .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2003, 7 (04) :353-359
[28]   The Independence Number of Graphs with a Forbidden Cycle and Ramsey Numbers [J].
Yusheng Li ;
Wenan Zang .
Journal of Combinatorial Optimization, 2003, 7 :353-359
[29]   Ramsey Numbers on a Union of Identical Stars Versus a Small Cycle [J].
Hasmawati, A. ;
Assiyatun, H. ;
Baskoro, E. T. ;
Salman, A. N. M. .
COMPUTATIONAL GEOMETRY AND GRAPH THEORY, 2008, 4535 :85-89
[30]   The Ramsey number for a cycle of length six versus a clique of order eight [J].
Chen, Yaojun ;
Cheng, T. C. Edwin ;
Xu, Ran .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (01) :8-12