(T)-structures over two-dimensional F-manifolds: formal classification

被引:0
作者
Liana David
Claus Hertling
机构
[1] “Simion Stoilow” Institute of Mathematics of the Romanian Academy,Lehrstuhl für Mathematik
[2] Universität Mannheim,undefined
[3] B6,undefined
[4] 26,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2020年 / 199卷
关键词
Meromorphic connections; (T) and (; )-structures; -manifolds; Euler fields; Frobenius manifolds; Formal classifications; 53B15; 35J99; 32A20; 53B50;
D O I
暂无
中图分类号
学科分类号
摘要
A (TE)-structure ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document} over a complex manifold M is a meromorphic connection defined on a holomorphic vector bundle over C×M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}\times M$$\end{document}, with poles of Poincaré rank one along {0}×M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ 0 \} \times M$$\end{document}. Under a mild additional condition (the so-called unfolding condition), ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document} induces a multiplication on TM and a vector field on M (the Euler field), which make M into an F-manifold with Euler field. By taking the pullbacks of ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document} under the inclusions {z}×M→C×M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ z\} \times M \rightarrow {\mathbb {C}}\times M$$\end{document}(z∈C∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(z\in \mathbb {C}^*)$$\end{document}, we obtain a family of flat connections on vector bundles over M, parameterized by z∈C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\in {\mathbb {C}}^{*}$$\end{document}. The properties of such a family of connections give rise to the notion of (T)-structure. Therefore, any (TE)-structure underlies a (T)-structure, but the converse is not true. The unfolding condition can be defined also for (T)-structures. A (T)-structure with the unfolding condition induces on its parameter space the structure of an F-manifold (without Euler field). After a brief review on the theory of (T)- and (TE)-structures, we determine normal forms for the equivalence classes, under formal isomorphisms, of (T)-structures which induce a given irreducible germ of two-dimensional F-manifolds.
引用
收藏
页码:1221 / 1242
页数:21
相关论文
共 18 条
[1]  
Coxeter HSM(1934)Discrete groups generated by reflections Ann. Math. 35 588-621
[2]  
David L(2017)Regular Ann. Sci. Norm. Super. Pisa Cl. Sci (5) XVII 1121-1152
[3]  
Hertling C(1998)-manifolds: initial conditions and Frobenius metrics J. Soviet. Math. 52 3246-3278
[4]  
Givental AB(2003)Singular Lagrangian manifolds and their Lagrangian maps J. Reine Angew. Math. 555 77-161
[5]  
Hertling C(1999) geometry, Frobenius manifolds, their connections, and the construction for singularities Int. Math. Res. Not. 6 277-286
[6]  
Hertling C(2009)Weak Frobenius manifolds Proc. Steklov Inst. Math. 264 62-69
[7]  
Manin Y(2010)An update on semisimple quantum cohomology and J. Reine Angew. Math. 649 117-165
[8]  
Hertling C(2011)-manifolds Arch. Math. 47 163-180
[9]  
Manin Y(1986)Frobenius manifolds, projective special geometry and Hitchin systems J. Ramanjuan Math. Soc. 1 3-15
[10]  
Teleman C(2004)-manifolds and integrable systems of hydrodynamic type Diff. Geom. Appl. 20 67-99