Disclosing a metabolic signature of cisplatin resistance in MDA-MB-231 triple-negative breast cancer cells by NMR metabolomics

被引:0
|
作者
Tatiana J. Carneiro
Ana L. M. Batista Carvalho
Martin Vojtek
Inês F. Carmo
Maria Paula M. Marques
Carmen Diniz
Ana M. Gil
机构
[1] University of Aveiro,Department of Chemistry and CICECO –Aveiro Institute of Materials
[2] University of Coimbra,Molecular Physical
[3] University of Porto,Chemistry R&D Unit, Department of Chemistry
[4] University of Coimbra,LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy
来源
Cancer Cell International | / 23卷
关键词
Triple negative breast cancer; MDA-MB-231 cell line; Cisplatin resistance; Metabolic profiling; Metabolomics; Nuclear magnetic resonance;
D O I
暂无
中图分类号
学科分类号
摘要
This work compared the metabolic profile of a parental MDA-MB-231 cisplatin-sensitive triple negative breast cancer (TNBC) cell line with that of a derived cisplatin-resistant line, to characterize inherent metabolic adaptations to resistance, as a means for marker and new TNBC therapies discovery. Supported by cytotoxic, microscopic and biochemical characterization of both lines, Nuclear Magnetic Resonance (NMR) metabolomics was employed to characterize cell polar extracts for the two cell lines, as a function of time (0, 24 and 48 h), and identify statistically relevant differences both between sensitive and resistant cells and their time course behavior. Biochemical results revealed a slight increase in activation of the NF-κB pathway and a marked decrease of the ERK signaling pathway in resistant cells. This was accompanied by lower glycolytic and glutaminolytic activities, possibly linked to glutamine being required to increase stemness capacity and, hence, higher survival to cisplatin. The TCA cycle dynamics seemed to be time-dependent, with an apparent activation at 48 h preferentially supported by anaplerotic aromatic amino acids, leucine and lysine. A distinct behavior of leucine, compared to the other branched-chain-amino-acids, suggested the importance of the recognized relationship between leucine and in mTOR-mediated autophagy to increase resistance. Suggested markers of MDA-MB-231 TNBC cisplatin-resistance included higher phosphocreatine/creatine ratios, hypotaurine/taurine–mediated antioxidant protective mechanisms, a generalized marked depletion in nucleotides/nucleosides, and a distinctive pattern of choline compounds. Although the putative hypotheses generated here require biological demonstration, they pave the way to the use of metabolites as markers of cisplatin-resistance in TNBC and as guidance to develop therapies.
引用
收藏
相关论文
共 50 条
  • [1] Disclosing a metabolic signature of cisplatin resistance in MDA-MB-231 triple-negative breast cancer cells by NMR metabolomics
    Carneiro, Tatiana J.
    Carvalho, Ana L. M. Batista
    Vojtek, Martin
    Carmo, Ines F.
    Marques, Maria Paula M.
    Diniz, Carmen
    Gil, Ana M.
    CANCER CELL INTERNATIONAL, 2023, 23 (01)
  • [2] Characterization of Triple-Negative Breast Cancer MDA-MB-231 Cell Spheroid Model
    Huang, Zhaoming
    Yu, Panpan
    Tang, Jianhui
    ONCOTARGETS AND THERAPY, 2020, 13 : 5395 - 5405
  • [3] MELK as a potential target to control cell proliferation in triple-negative breast cancer MDA-MB-231 cells
    Li, Gang
    Yang, Mei
    Zuo, Li
    Wang, Mei-Xing
    ONCOLOGY LETTERS, 2018, 15 (06) : 9934 - 9940
  • [4] Metabolomics Profiling Reveals the Role of PEDF in Triple-Negative Breast Cancer Cell MDA-MB-231 under Glycaemic Loading
    Abooshahab, Raziyeh
    Hooshmand, Kourosh
    Luna, Giuseppe
    Al-Salami, Hani
    Dass, Crispin R.
    PHARMACEUTICS, 2023, 15 (02)
  • [5] Targeted Inhibition of miR-221/222 Promotes Cell Sensitivity to Cisplatin in Triple-Negative Breast Cancer MDA-MB-231 Cells
    Li, Shujun
    Li, Qun
    Lu, Jinhui
    Zhao, Qian
    Li, Danni
    Shen, Lei
    Wang, Zhongrui
    Liu, Junjun
    Xie, Dongping
    Cho, William C.
    Xu, Shaohua
    Yu, Zuoren
    FRONTIERS IN GENETICS, 2020, 10
  • [6] Establishment of a bioluminescent MDA-MB-231 cell line for human triple-negative breast cancer research
    Wang, Ke
    Xie, Simei
    Ren, Yu
    Xia, Haibin
    Zhang, Xinwei
    He, Jianjun
    ONCOLOGY REPORTS, 2012, 27 (06) : 1981 - 1989
  • [7] BTG2 inhibits the proliferation, invasion, and apoptosis of MDA-MB-231 triple-negative breast cancer cells
    Zhang, Yan-jun
    Wei, Lichun
    Liu, Mei
    Li, Jie
    Zheng, Yi-qiong
    Gao, Ying
    Li, Xi-ru
    TUMOR BIOLOGY, 2013, 34 (03) : 1605 - 1613
  • [8] Mechanism for ginsenoside Rh2-induced apoptosis of triple-negative breast cancer MDA-MB-231 cells
    Zeng, Y.
    Mao, J.
    Wang, X.
    Yin, B.
    Shen, Z.
    Di, C.
    Gu, W.
    Wu, M.
    CLINICAL AND EXPERIMENTAL OBSTETRICS & GYNECOLOGY, 2020, 47 (01): : 99 - 104
  • [9] A preliminary mechanistic exploration of the effect of leptin on the docetaxel sensitivity of MDA-MB-231 triple-negative breast cancer cells
    Gao, Simeng
    Ding, Sijuan
    Tang, Zhaohui
    MOLECULAR AND CLINICAL ONCOLOGY, 2024, 20 (03)
  • [10] Identification of a Resistance Mechanism to IGF-IR Targeting in Human Triple Negative MDA-MB-231 Breast Cancer Cells
    Tsui, Jennifer
    Qi, Shu
    Perrino, Stephanie
    Leibovitch, Matthew
    Brodt, Pnina
    BIOMOLECULES, 2021, 11 (04)